Meteorological drought monitoring based on satellite rainfall estimates: A case study on the Andean Rapel River Basin (Chile)

“Coping with Droughts”, MWAR-LAC, Santiago, Chile

Mauricio Zambrano-Bigiarini

November 19th 2014
Fac. de Ciencias Ambientales y Centro EULA-Chile
Universidad de Concepción, Concepción, Chile

mauricio.zambrano @ udec.cl
Daily precipitation: spatial distribution

25 raingauges (DGA): \(\sim 1\) each 550 km\(^2\) (0-1500 msnm)
Daily precipitation: little data at high elevations

≈ 31% of the area without observations (highest precipitation values)
Daily precipitation: ~short records, with gaps

N° de días con información por año, en cada estación pluviométrica
Cuenca del Río Rapel

SPI-TRMM 3B43.V7-MWAR-LAC 2014
Issues for traditional drought monitoring:

- **Short** or **incomplete** historical records \rightarrow gap filling (from other incomplete historical records).
Issues for traditional drought monitoring:

- **Short** or **incomplete** historical records \rightarrow gap filling (from other incomplete historical records).

- **Sparse** network of raingauges \rightarrow high uncertainties in spatial distribution of precipitation.
Issues for traditional drought monitoring:

- **Short** or **incomplete** historical records \rightarrow gap filling (from other incomplete historical records).

- **Sparse** network of raingauges \rightarrow high uncertainties in spatial distribution of precipitation.

- **Absence** of measurements at high elevations \rightarrow **underestimation** of precipitation amount in the headwaters.
Issues for traditional drought monitoring:

- **Short** or **incomplete** historical records \rightarrow gap filling (from other incomplete historical records).

- **Sparse** network of raingauges \rightarrow high uncertainties in spatial distribution of precipitation.

- **Absence** of measurements at high elevations \rightarrow **underestimation** of precipitation amount in the headwaters.

Decision-making under uncertainty:

Difficulties for planning ahead and implementation of *ad-hoc* mitigation policies.
To assess the suitability of the satellite-based TRMM 3B43.V7 data as a free and publicly available precipitation data source for meteorological drought monitoring in data-scarce areas, in particular in the Rapel River Basin in the central Chilean Andes (33°51’ - 35°01’ S).
Tropical Rainfall Measuring Mission (TRMM) Huffman et al. 2007

- Quasi-global and near-real-time satellite rainfall estimates (SRE) (50°N - 50°S), from different satellite-borne sensors.
Tropical Rainfall Measuring Mission (TRMM) Huffman et al. 2007

- Quasi-global and near-real-time satellite rainfall estimates (SRE) (50°N - 50°S), from different satellite-borne sensors.

- Spatial resolution: 0.25° x 0.25°
Tropical Rainfall Measuring Mission (TRMM) Huffman et al. 2007

- Quasi-global and near-real-time satellite rainfall estimates (SRE) (50°N - 50°S), from different satellite-borne sensors.

- Spatial resolution: 0.25°x 0.25°

- Temporal resolution: every 3 hrs (since 01-Jan-1998).
Tropical Rainfall Measuring Mission (TRMM) Huffman et al. 2007

- Quasi-global and near-real-time satellite rainfall estimates (SRE) (50°N - 50°S), from different satellite-borne sensors.

- Spatial resolution: 0.25° x 0.25°

- Temporal resolution: every 3 hrs (since 01-Jan-1998).

- Available products: near-real-time (3B42RT), daily (3B42) and monthly (3B43).
TRMM: Instruments

- **TRMM Microwave Imager (TMI):** passive microwave sensor designed to provide quantitative rainfall information over a wide swath.
TRMM: Instruments

- **TRMM Microwave Imager (TMI):** passive microwave sensor designed to provide quantitative rainfall information over a wide swath.

- **Precipitation Radar (PR):** 3D maps of storm structure. Able to detect fairly light rain rates (0.7 mm/hr).
TRMM: Instruments

- **TRMM Microwave Imager (TMI):** passive microwave sensor designed to provide quantitative rainfall information over a wide swath.

- **Precipitation Radar (PR):** 3D maps of storm structure. Able to detect fairly light rain rates (0.7 mm/hr).

- **Visible and InfraRed Scanner (VIRS):** delineation of rainfall and communication with POES and GOES.
TRMM: Instruments

- **TRMM Microwave Imager (TMI)**: passive microwave sensor designed to provide quantitative rainfall information over a wide swath.

- **Precipitation Radar (PR)**: 3D maps of storm structure. Able to detect fairly light rain rates (0.7 mm/hr).

- **Visible and InfraRed Scanner (VIRS)**: delineation of rainfall and communication with POES and GOES.

- **Cloud and Earth Radiant Energy Sensor (CERES)**.
TRMM: Instruments

- **TRMM Microwave Imager (TMI):** passive microwave sensor designed to provide quantitative rainfall information over a wide swath.

- **Precipitation Radar (PR):** 3D maps of storm structure. Able to detect fairly light rain rates (0.7 mm/hr).

- **Visible and InfraRed Scanner (VIRS):** delineation of rainfall and communication with POES and GOES.

- **Cloud and Earth Radiant Energy Sensor (CERES).**

- **Lightning Imaging Sensor (LIS).**
Methodology

Assessment of TRMM 3B43.V7 SRFE against ground raingauges (DGA):

1. Download TRMM 3B43.V7 satellite data (Huffman et al., 2010).
Assessment of TRMM 3B43.V7 SRFE against ground raingauges (DGA):

1. Download TRMM 3B43.V7 satellite data (Huffman et al., 2010).

2. Re-projection and application of zonal mask (33°51’ - 35°01’ S).
Methodology

Assessment of TRMM 3B43.V7 SRFE against ground raingauges (DGA):

1. Download TRMM 3B43.V7 satellite data (Huffman et al., 2010).

2. Re-projection and application of zonal mask (33°51' - 35°01' S).

Methodology

Assessment of TRMM 3B43.V7 SRFE against ground raingauges (DGA):

1. Download TRMM 3B43.V7 satellite data (Huffman et al., 2010).

2. Re-projection and application of zonal mask (33°51’ - 35°01’ S).

SPI computations:

1. carried out with the SPEI R package (Beguería and Vicente-Serrano, 2014).
Methodology

Assessment of TRMM 3B43.V7 SRFE against ground raingauges (DGA):

1. Download TRMM 3B43.V7 satellite data (Huffman et al., 2010).

2. Re-projection and application of zonal mask (33°51' - 35°01' S).

SPI computations:

1. carried out with the SPEI R package (Beguería and Vicente-Serrano, 2014).

2. SPI computed for each grid cell at 1-, 3-, 6-, 9-, 12- and 24-month time scales.
1 Motivation
2 Objective
3 Tropical Rainfall Measuring Mission (TRMM)
4 Methodology
5 Results
 - Point-to-pixel comparisons
 - SPI: time series
 - SPI: Spatial distribution
6 Conclusions
Estación Coltauco

Estación P05: Coltauco
Cod.BNA: 06012003–K. Altitud: 280 [m snm]
Estación San Fernando - DCP

Estación P08: San Fernando–DCP
Cod.BNA: 06016004–K. Altitud: 350 [m snm]
Temas

1. Motivation
2. Objective
3. Tropical Rainfall Measuring Mission (TRMM)
4. Methodology
5. Results
 - Point-to-pixel comparisons
 - SPI: time series
 - SPI: Spatial distribution
6. Conclusions
SPI-12 at station P05. Nombre: Coltauco

SPI-12 at station P08. Nombre: San Fernando–DCP
SPI-12 at station P11. Nombre: Pichidegua

SPI-12 at station P12. Nombre: La Rufina
Altitud: 735. Cod.BNA: 06027003–1. ID: P12
SPI–24 at station P11. Nombre: Pichidegua

SPI–24 at station P12. Nombre: La Rufina
Altitud: 735. Cod.BNA: 06027003–1. ID: P12
1 Motivation

2 Objective

3 Tropical Rainfall Measuring Mission (TRMM)

4 Methodology

5 Results
 - Point-to-pixel comparisons
 - SPI: time series
 - SPI: Spatial distribution

6 Conclusions
SPI-12 values based on TRMM 3B42v7
Rapel River Basin

Motivation Objectives TRMM Methodology Results Conclusions References
SPI-24 values based on TRMM 3B42v7
Rapel River Basin

- Apr.2013
- May.2013
- Jun.2013
- Jul.2013
- Aug.2013
- Sep.2013
- Oct.2013
- Nov.2013
- Dec.2013
- Jan.2014
- Feb.2014
- Mar.2014
- Apr.2014
- May.2014
- Jun.2014
- Jul.2014
SPI values based on TRMM 3B42v7 (Jul–2014)
Rapel River Basin
Conclusions

1. Monthly TRMM 3B43.V7 values correctly reproduced the shape of the observed signal and the amount of precipitation registered at 9 raingauges (DGA).

2. The validity of the aforementioned comparison is limited by the lack of observed data above 1500 m asl.

4. Negative values of SPI-12 and SPI-24 all over the basin (July 2014) indicate that a decreasing trend of precipitation is ongoing.

5. SPI values were lower in high elevation areas (no raingauges!) → likely severe negative impacts on agriculture, reservoirs and groundwater levels.

6. The proposed approach might be used as a cost-effective solution to support decision-making or as a first step towards an early warning system in data-scarse regions in LAC.

7. Future improvements: SPEI instead of SPI...
Conclusions

1. Monthly TRMM 3B43.V7 values correctly reproduced the shape of the observed signal and the amount of precipitation registered at 9 raingauges (DGA).

2. The validity of the aforementioned comparison is limited by the lack of observed data above 1500 m asl.
Conclusions

1. Monthly TRMM 3B43.V7 values correctly reproduced the shape of the observed signal and the amount of precipitation registered at 9 raingauges (DGA).

2. The validity of the aforementioned comparison is limited by the lack of observed data above 1500 m asl.

Conclusions

1. Monthly TRMM 3B43.V7 values correctly reproduced the shape of the observed signal and the amount of precipitation registered at 9 rain gauges (DGA).

2. The validity of the aforementioned comparison is limited by the lack of observed data above 1500 m asl.

4. Negative values of SPI-12 and SPI-24 all over the basin (July 2014) indicate that a decreasing trend of precipitation is ongoing.
Conclusions

1. Monthly TRMM 3B43.V7 values correctly reproduced the shape of the observed signal and the amount of precipitation registered at 9 raingauges (DGA).

2. The validity of the aforementioned comparison is limited by the lack of observed data above 1500 m asl.

4. Negative values of SPI-12 and SPI-24 all over the basin (July 2014) indicate that a decreasing trend of precipitation is ongoing.

5. SPI values were lower in high elevation areas (no raingauges!) → likely severe negative impacts on agriculture, reservoirs and groundwater levels.
Conclusions

1. Monthly TRMM 3B43.V7 values correctly reproduced the shape of the observed signal and the amount of precipitation registered at 9 raingauges (DGA).

2. The validity of the aforementioned comparison is limited by the lack of observed data above 1500 m asl.

4. Negative values of SPI-12 and SPI-24 all over the basin (July 2014) indicate that a decreasing trend of precipitation is ongoing.

5. SPI values were lower in high elevation areas (no raingauges!) → likely severe negative impacts on agriculture, reservoirs and groundwater levels.

6. The proposed approach might be used as a cost-effective solution to support decision-making or as a first step towards and early warning system in data-scarce regions in LAC.
Conclusions

1. Monthly TRMM 3B43.V7 values correctly reproduced the shape of the observed signal and the amount of precipitation registered at 9 raingauges (DGA).

2. The validity of the aforementioned comparison is limited by the lack of observed data above 1500 m asl.

4. Negative values of SPI-12 and SPI-24 all over the basin (July 2014) indicate that a decreasing trend of precipitation is ongoing.

5. SPI values were lower in high elevation areas (no raingauges!) → likely severe negative impacts on agriculture, reservoirs and groundwater levels.

6. The proposed approach might be used as a cost-effective solution to support decision-making or as a first step towards and early warning system in data-scarce regions in LAC.

7. Future improvements: SPEI instead of SPI ...

< mauricio.zambrano @ udec.cl >

