# A Probabilistic Framework for Assessing Drought Recovery

# Eric F. Wood and Ming Pan

Terrestrial Hydrology Group Princeton University



International Expert Symposium "Coping with Droughts" Santiago, Chile November 19-21, 2014

**PRINCETON** UNIVERSITY

# **Background: Some Recent Droughts in US**

#### 2007 Southeast

2011 Texas

2012-2013 Central US











# Background

#### **Drought Monitoring and Hydrologic Forecasting with VIC**





Website created by Lifeng Luo and maintained by Ming Pan EEWR/CEE, Princeton University Last update: Wed Feb 6 12:52:11 2013 EST

# **The Challenge**

How can we provide useful (skillful) forecasts of drought recovery that would include meteorological drought, agricultural drought and hydrological drought?

(i) Using dynamical seasonal forecast models(ii) Using ESP: "Ensemble Streamflow Prediction" approach based on historical analogues

#### Drought Monitoring and Hydrologic Forecasting with VIC



### **ESP Technique**

ESP scenario (ensemble) simulation uses current hydrologic states with <u>resampling historical</u> or <u>forecast</u> meteorology

- Starts the model at current model states
- Resets to the current model states for each year
- Each simulation begins with the same conditions

Conditional



### **ESP Approach**



#### ESP Technique → Risk Assessment



## **Application: Recovery from the 2012 USA drought**



Soil Moisture percentile for January 2013.



### Applying ESP for Drought Recovery

- Using current hydrologic conditions (soil moisture from January 2013), run ESP scenarios using historic meteorological forcings (50 years).
- For specific forecast lead times, convert soil moistures values (for a location or region) and cumulative precipitation amounts to percentiles.
- Fit joint probability distributions using copula functions.

# **Copula for Constructing Joint Distribution**

Sklar's theorem:

 $F_{XY}(x, y) = C(F_X(x), F_Y(y))$ 





### Applying ESP for Drought Recovery

4. Fitting a joint distribution to the ESP simulations results in a smooth distribution that provides an estimate of recovery (above a drought threshold) and the uncertainty (risk) of recovery conditioned on the cumulative precipitation.

**PRINCETON** UNIVERSITY

# **Copula provides probability of drought recovery**



**PRINCETON** UNIVERSITY



# Copula provides probability of drought recovery

- ESP Ensemble
- $\mathbf{x} \quad p_{median} | \theta = \theta_{drought}$

$$----- \theta_{drought} = 30\%$$

$$f(\theta|p=50\%)$$

$$----- f(\theta|p = 70\%)$$

#### Median precipitation percentile for recovery (red: irrecoverable)



#### **Recovery probability % at median precipitation (red: irrecoverable)**



#### Summary

A method has been developed and tested that provides a probabilistic assessment of agricultural drought recovery based on ESP;

This allows for quantifying the risk, which can help agricultural decision making;

The approach can be augmented to include forecasts during drought events related to crop yield, streamflow, stream tempertures, or reservoir levels.

GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 3637-3642, doi:10.1002/grl.50728, 2013

#### A probabilistic framework for assessing drought recovery

Ming Pan,<sup>1</sup> Xing Yuan,<sup>1</sup> and Eric F. Wood<sup>1</sup>

Received 18 June 2013; revised 8 July 2013; accepted 8 July 2013; published 26 July 2013.

[1] A probabilistic framework is proposed to explore drought recovery and its uncertainty based on any ensemble forecast. First, the joint distribution between precipitation and drought [3] Drought management would benefit greatly if more risk-based information is available on how a region in drought may recover [*Karl et al.*, 1987], e.g., the likelihood