Tutoria Modelo Pronostico – Microsoft Excel

Diseño por Eric A. Sproles HidroLabs CEAZA

En esta tarea, vamos a usar el Solver para solucionar un modelo hídrico.

Como recuerdas el algoritmo para el modelo pronóstico es:

 $Q_{pre} = aCN^{b} + cQ_{corto} + dQ_{largo}$

Donde:

CN = cubierta de nieve Q_{corto} = caudal promedio de los dos meses anterior Q_{largo} = caudal promedio de los doce meses anterior

Y a,b,c,d son parámetros. Usarás Solver para optimizar esos parámetros.

Para evaluar y optimizar la capacidad predictiva del modelo, se utiliza la siguiente métrica::

Nash-Sutcliffe Eficiencia (NSE) donde: NSE = 1 significa el modelo es perfecto. NSE = 0 significa que el modelo es igual al promedio de los datos observados, y valores negativo significa que el promedio es mejor predictor.

 \mathbf{R}^2 - R cuadrado, es El coeficiente que significa la calidad del modelo para replicar los resultados, y la proporción de variación de los resultados que puede explicarse por el modelo. $\mathbf{R}^2 = 1$ significa el modelo es perfecto.

RMSE - raíz cuadrada del error cuadrático y es una medida de desempeño cuantitativa utilizada comúnmente para evaluar métodos de pronóstico de demanda. Cuanto más bajo es el valor. RMSE = 0 significa que el modelo no tiene error.

Paso 1: Orientarse con el modelo

⇒ Abrir el archivo Entradas Pronosticas.xlsx

Las primeras cuatro filas tiene los parámetros (*a*,*b*,*c*,*d*) y las métricas (NSE, R², RMSE). Los datos empiezan en la fila seis.

⇒ Tome un momento para revisar las columnas A-K, y que representa. También revisar los formularios de NSE, R², RMSE.

Debes cumplir la siguiente tabla:

	żQué es?	Ecuación (si hay)
Año		
Mes		
Fecha		
Q medida (m^3/s)		
Q Pronostico (m^3/s)		
% Área Cubierta de Nieve		
Componente de Nieve		
Componente de Q_corto		
Componente de Q_larga		
(Obs - Sim)^2		
(Obs - Promedio)^2		
NSE		
R2		
RMSE		

Paso 2: Hacer los restricciones en Solver

⇒ Abrir Solver - el comando Solver estará disponible en el grupo Análisis de la ficha Datos.

Nash-Sutcliffe Efficiency (NSE – celda E1) sería la celda objetivo para un valor de 1.

Cambiando las celdas variables (parámetros) en (celdas B1 – B4) para optimizar el modelo.

El método de resolución sería Nonlinear, porque usamos exponentes.

	Parámetros de Solver	
Establecer objetivo:	\$E\$1	
Para: Máx. O	Mín 💽 Valor de:	1
Cambiando las celdas	de variables:	
SR\$1-SR\$4	de variables.	
3031.3031		
Sujeto a las restriccio	nes:	
		Agregar
		Cambiar
		Eliminar
		Restablecer todo
		Cargar/Guardar
🗸 Convertir variable	s sin restricciones en no ne	gativas
Método de resoluciór	GRG Nonlinear 🔻	Opciones
Método de resolución		
Seleccione el motor G suavizados. Seleccione lineales, y seleccione	C Nonlinear para problemas o el motor LP Simplex para pro I motor Evolutionary para prol	de Solver no lineales blemas de Solver blemas de Solver no
suavizados.		

- ⇒ Ahora Resolver la solución
- \Rightarrow Llenar la tabla:

A parámetro =	NSE	
B parámetro =	R2	
C parámetro =	RMSE	
D parámetro =		

Puedes ver que la solución funciona muy bien. Un NSE > 0.8 es bueno.

Habla con tus compañeros, y hacer una comparación entre los valores de los parámetros y de las métricas.

También puedes incorporar otras métricas que enfoque los caudales bajo (log(Q)) o el énfasis en el apareamiento global hidrograma (raíz(Q)).

También recomiendo dividir los datos en dos compontes (calibración y validación) si estas desarrollando y probando un modelo nuevo.