

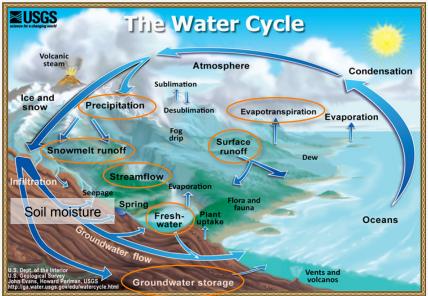
ARSET

Applied Remote Sensing Training

http://arset.gsfc.nasa.gov

@NASAARSET

NASA Satellites and Earth System Models for Water Resources Management


Outline

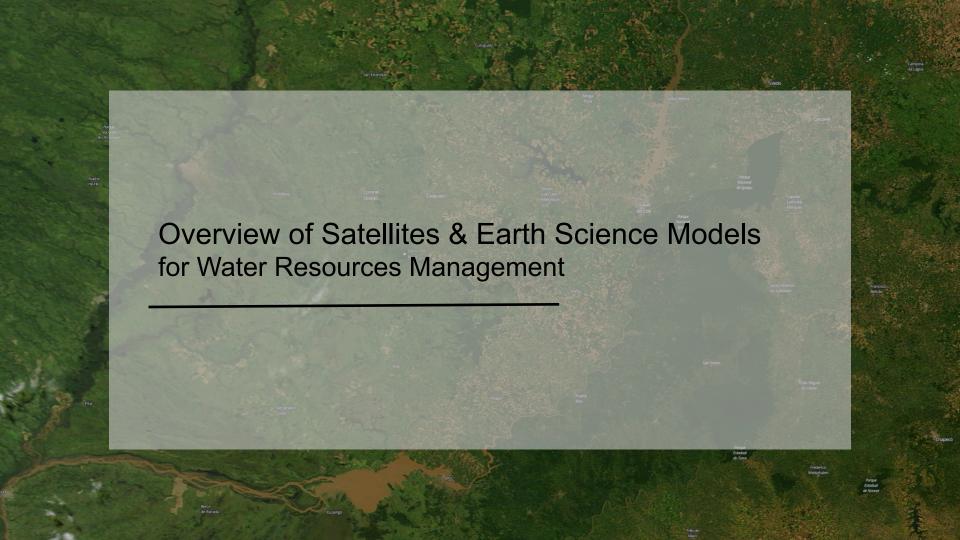
- Water Resources Management
- Overview of Satellites & Earth Science Models for Water Resources Management
- Satellites & Sensors
- Earth System Models
- Data Applications

Water Resources Management

 For sustainable water management, it is critical to have accurate estimates of water cycle components

USGS

Water Resources Management


Freshwater Components

Over a watershed, river basin, or region:

- Precipitation (rain, snow) is the main source of fresh water
 - Other regional contributions: runoff/streamflow, lakes, soil moisture, and ground water
- Evaporation and evapotranspiration through loss of water to atmosphere and runoff outflow contribute to depletion of fresh water
- Surface fresh water availability (W) is largely controlled as follows:
 - W = (precipitation + runoff in the region) (evaporation/ evapotranspiration + runoff outflow + infiltration)

Freshwater Information

- Not all water cycle components can easily be measured directly, such as:
 - Evapotranspiration
 - Runoff
 - Water vapor transport
- NASA satellites and Earth system models measure and calculate all water cycle components

NASA Satellites & Earth System Models

Hourly, Daily, Seasonal, and Multi-Year Time Scales

Useful for water resources management & for hydrology model inputs

- Rain
- Temperature
- Humidity
- Winds
- Soil Moisture
- Snow/Ice
- Clouds
- Terrain

- Ground Water
- Vegetation Index
- Evapotranspiration
- Runoff

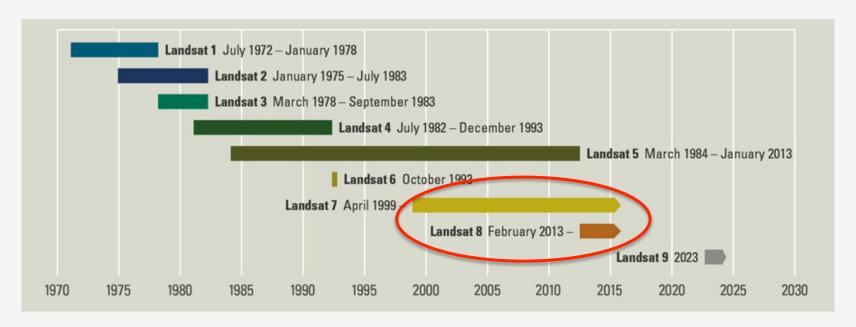
From satellites and models

From satellite observations

From atmosphere-land models that assimilate satellite observations

NASA Satellites for Water Resources Monitoring

- Landsat: 07/1972-present
- Tropical Rainfall Measuring Mission (TRMM): 11/1997-present
- Global Precipitation Measurements (GPM): 2/2014-present
- Terra: 12/1999-present
- Aqua: 5/2002-present
- Soil Moisture Active Passive (SMAP): 1/2015-present
- Gravity Recovery and Climate Experiment (GRACE): 3/2002present


NASA Satellites for Water Resources Monitoring

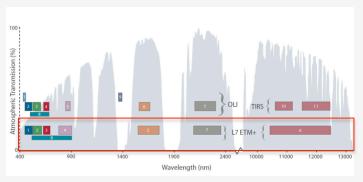
- Each satellite carries one or more sensors or instruments with specific spectral channels to observe geophysical quantities
- This presentation will describe sensors most useful for water resources data

- Landsat: 07/1972-present
- TRMM: 11/1997-present
- GPM: 2/2014-present
- Terra: 12/1999-present
- Aqua: 5/2002-present
- SMAP: 1/2015-present
- GRACE: 3/2002-present

Landsat Satellites and Sensors

http://landsat.gsfc.nasa.gov

From: http://landsat.usgs.gov//about_mission_history.php


Enhanced Thematic Mapper (ETM+)

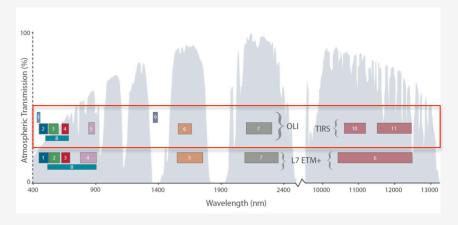
http://geo.arc.nasa.gov/sge/landsat/l7.html

- Onboard <u>Landsat-7</u>
- Polar orbiting satellite
- Spatial Coverage and Resolution:
 - Global, Swath: 185km
 - Spatial Resolution: 15m, **30m**, 60m
- Temporal Coverage and Resolution:
 - April 15, 1999-present
 - 16-day revisit time

Spectral Bands

- 8 bands (blue-green, green, red, reflected & thermal IR, panchromatic)
 - Bands 1-5, 7: 30m
 - Band 6: 60m
 - Band 8:15m

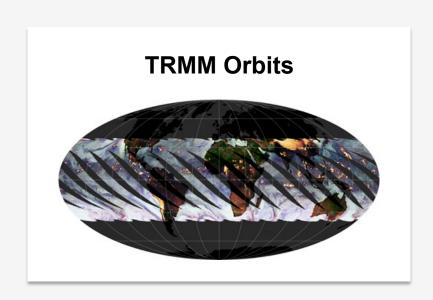
NASA


Operational Land Imager (OLI)

http://landsat.usgs.gov/landsat8.php; http://landsat.gsfc.nasa.gov/?p=5779

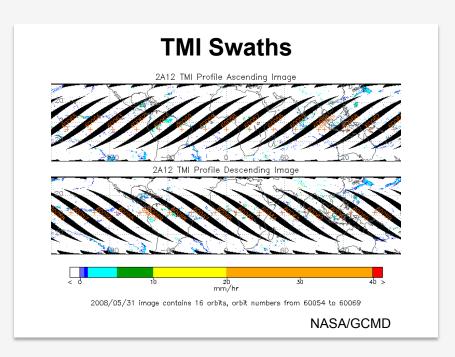
- Onboard Landsat-8
- Polar orbiting satellite
- Spatial Coverage and Resolution:
 - Global, Swath: 185km
 - Spatial resolution: 15m, 30m
- Temporal Coverage and Resolution:
 - Feb 11, 2013 present
 - 16-day revisit time

Spectral Bands


- 9 bands (blue-green, green, red, near IR, shortwave and thermal IR)
 - Bands 1-7, 9: 30m
 - Band 8:15m

TRMM Satellite & Sensors

http://trmm.gsfc.nasa.gov


- In a non-polar, low-inclination orbit
- Altitude of approximately 350km, raised to 403km after Aug 23, 2001
- Spatial Coverage
 - 16 TRMM orbits a day covering global tropics between 35°S – 35°N latitude
- Revisit Time: 11-12 hrs
 - Time of observation changes daily
- Sensors:
 - TMI LIS
 - PR CERES
 - VIIRS

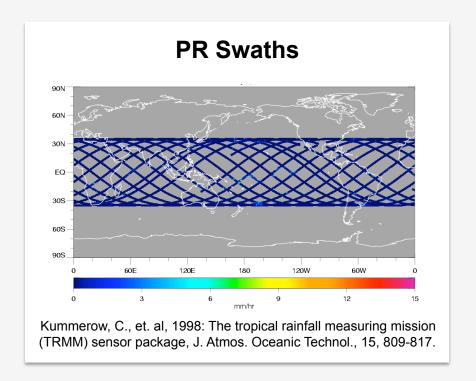
TRMM Microwave Imager (TMI)

http://pmm.nasa.gov/TRMM/TMI

- Spatial Coverage and Resolution:
 - Coverage: -180°-180°, 35°S-35°N
 - Swath: 760km (878km after 8/2001)
 - Vertical Resolution:
 - 0.5 km from surface 4 km
 - 1.0 km from 4-6 km
 - 2.0 km from 6-10 km
 - 4.0 km from 10-18 km
- Temporal Coverage and Resolution:
 - Nov 27, 1988 Oct 7, 2014
 - 16 orbits per day

Channel Frequencies

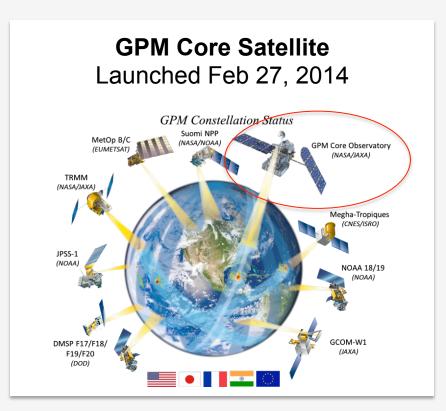
• 10.7, 19.4, 21.3, 37, 85.5 GHz


Precipitation Radar (PR)

http://pmm.nasa.gov/TRMM/PR

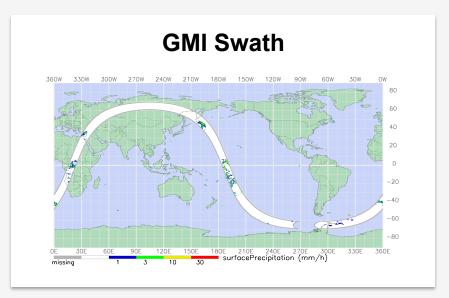
- Spatial Coverage and Resolution:
 - Coverage: 35°S-35°N
 - Swath: 215km (247 after 8/2001)
 - Spatial Resolution: 4.3km (5km)
 - Vertical Resolution: 250m (from 0-20km)
- Temporal Coverage and Resolution:
 - Nov 27, 1998 Oct 7, 2014
 - ~16 orbits per day

National Aeronautics and Space Administration


- Frequency:
 - 13.6 GHz

GPM Satellite & Sensors

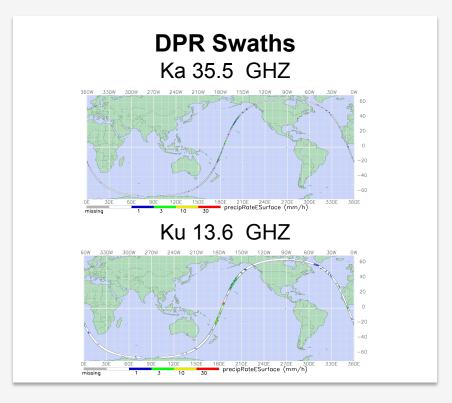
http://pmm.nasa.gov/GPM


- GPM core satellite is in a non-polar, low inclination orbit
 - Altitude: 407km
- Spatial Coverage:
 - 16 orbits a day covering global tropics, between 65°S-65°N
- Along with constellation of satellites, GPM has a revisit time of 1-2 hrs over land
- Sensors:
 - GMI
 - DPR

GPM Microwave Imager (GMI)

http://pmm.nasa.gov/GPM/flight-project/GMI

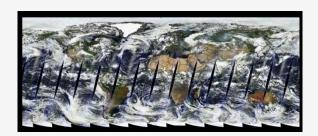
- Spatial Coverage and Resolution:
 - Coverage: -180°-180°, 65°S-65°N
 - Swath: 885km
 - Spatial Resolution: 4.4-32km
 - Vertical Resolution:
 - 0.5 km from surface 4 km
 - 1.0 km from 4-6 km
 - 2.0 km from 6-10 km
 - 4.0 km from 10-18 km
- Temporal Coverage and Resolution:
 - Feb 2014 present
 - ~2-4 hr observations


Channel Frequencies:

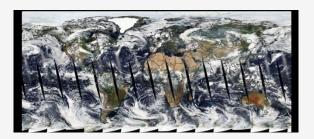
• 10.6, 18.7, 23.8, 36.5, 89, 166, 183 GHz

Dual Precipitation Radar (DPR)

http://pmm.nasa.gov/GPM/flight-project/DPR


- Spatial Coverage and Resolution:
 - Coverage: -180°-180°, 65°S-65°N
 - Swath: 120km (Ka) and 245km (Ku)
 - Spatial Resolution: 5.2km
 - Vertical Resolution: 250m (from 0-20km)
- Temporal Coverage and Resolution:
 - Feb 27, 2014 present
 - ~2-4 hr observations
- Frequency:
 - 13.6 and 35.5 GHz

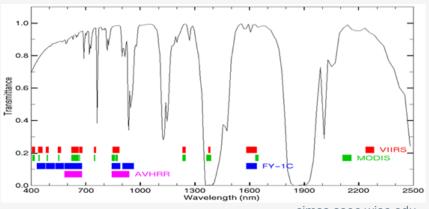
Terra and Aqua


Terra

- Polar orbit, 10:30 a.m. equator crossing time
- Global coverage
- December 18, 1999 present
- 1-2 observations per day
- Sensors:
 - ASTER, CERES, MISR, MODIS, MOPITT

Aqua

- Polar orbit, 1:30 p.m. equator crossing time
- Global coverage
- May 4, 2002 present
- 1-2 observations per day
- Sensors:
 - AIRS, AMSU, CERES, MODIS, AMSR-E

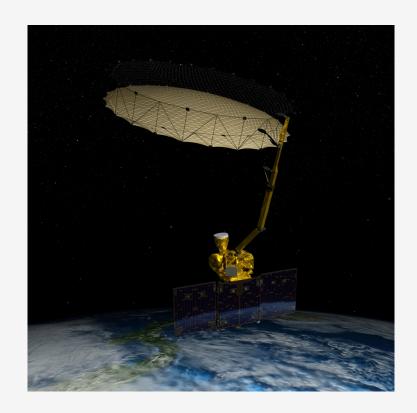

MODerate Resolution Imaging Spectroradiometer (MODIS)

http://modis.gsfc.nasa.gov

- On-board Terra and Aqua
- Designed for land, atmosphere, ocean, and cryosphere observations
- Spatial Coverage and Resolution:
 - Global, Swath: 2,330km
 - Spatial Resolution Varies: 250m, 500m, 1km
- Temporal Coverage and Resolution:
 - 2000-present, 2 times per day

Spectral Bands

- 36 bands (red, blue, IR, NIR, MIR)
 - Bands 1-2: 250m
 - Bands 3-7: 500m
 - Bands 8-16: 1000m



cimss.ssec.wisc.edu

SMAP Satellite & Sensors

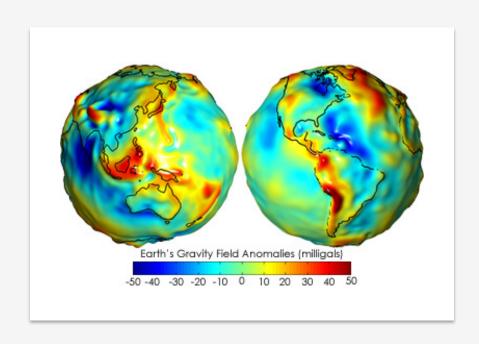
http://smap.jpl.nasa.gov

- Polar Orbit
 - Altitude: 685km
- Spatial Coverage:
 - Global
- Temporal Coverage:
 - January 31, 2015 present
- Sensors:
 - Microwave Radiometer
 - Microwave Radar (not currently available)

SMAP Microwave Radiometer and Radar

http://smap.jpl.gov/observatory/instrument

- Spatial Coverage and Resolution:
 - Global
 - Radiometer Swath: 1,000km
 - Resolution: 30km
- Temporal Resolution:
 - 8-day revisit time (6 a.m./p.m. observation time)
- Designed to work as Synthetic Aperture Radar (SAR) with 3km spatial resolution
 - Stopped operating after Jul 7, 2015


- Radiometer frequency: 1.41 GHz
- Radar frequency: 1.26 GHz

GRACE Satellite & Sensors

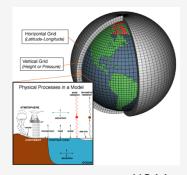
http://www.jpl.nasa.gov/missions/details.php?id=5882

- Polar, sun-synchronous orbit
- Twin satellite mission
- Spatial Coverage and Resolution:
 - Global
 - Resolution: 150,000 km²
- Temporal Coverage and Resolution:
 - March 17, 2002 present
 - 250 gravity profiles per day
- Sensors:
 - Microwave k-band ranging instrument
 - Accelerometers
 - Global Positioning System Receivers

Earth System Models Provide Value-Added Information

Remote Sensing + Surface Observations + Numerical Models

Satellite Data



NASA

Numerical Models

NOAA

Surface Measurements and In-Situ Data

NASA

NASA Models Useful for Water Resources Management

Atmosphere-Ocean-Land Models

- GEOS-5:
 - The Goddard Earth Observing System Version 5
- MERRA:
 - Modern Era Retrospective-Analysis for Research and Application
- GLDAS:
 - Global Land Data Assimilation System

Global & North American Land Data Assimilation Systems

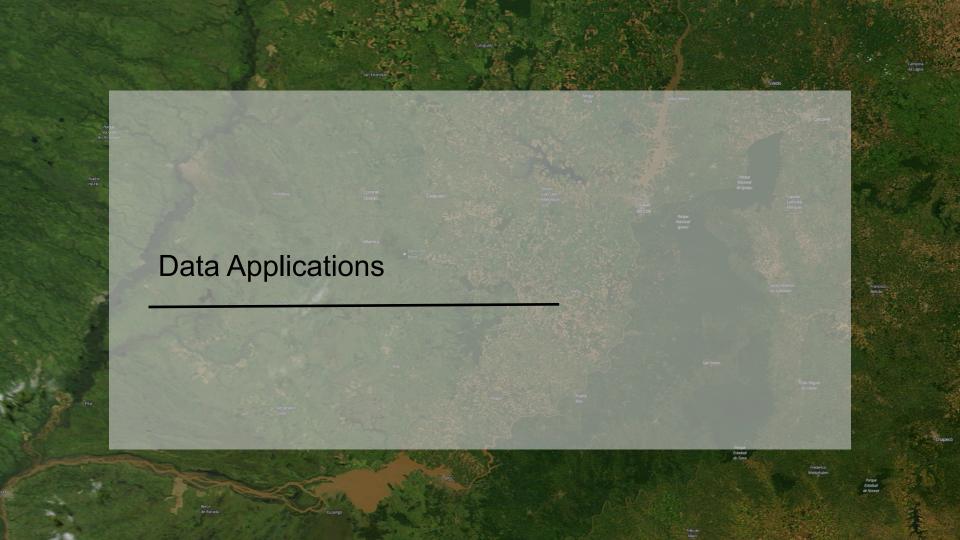
http://ldas.gsfc.nasa.gov

- Integrates ground and satellite observations within numerical models to produce consistent, high resolution fields of land surface states and fluxes
- Uses data from MODIS, TRMM, GOES
- GLDAS and a version of NLDAS use the Land Information System (LIS) with different sources of inputs
 - Meteorological Analysis
- Soil Texture
- Surface Solar Radiation
- Vegetation Classification and Leaf Area Index

Precipitation

- Topography
- Integrated Output for Water Resources
 - Soil Moisture

- Surface/Sub-Surface Runoff


Evapotranspiration

- Snow Water Equivalent

Satellites and Models

Freshwater Components

- Rain Amount (TRMM, GPM)
- Snow Cover (Terra and Aqua MODIS)
- Soil Moisture (SMAP, GLDAS)
- Evapotranspiration (Terra and Aqua MODIS, Landsat, GLDAS)
- Runoff/Streamflow (TRMM, GPM, GLDAS)

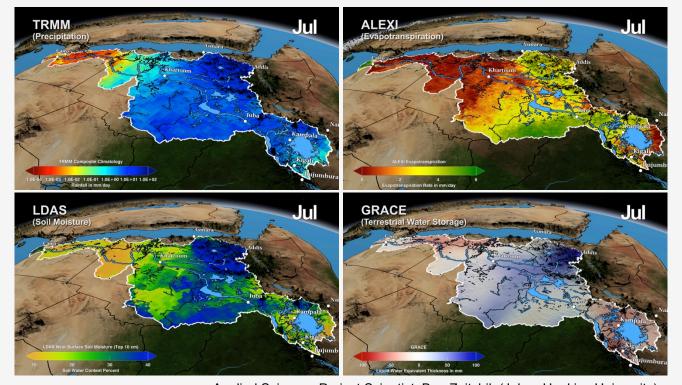
Water Resources: Satellite Data Applications Crucial Freshwater Components

Water Allocation

Agricultural & Irrigation Management

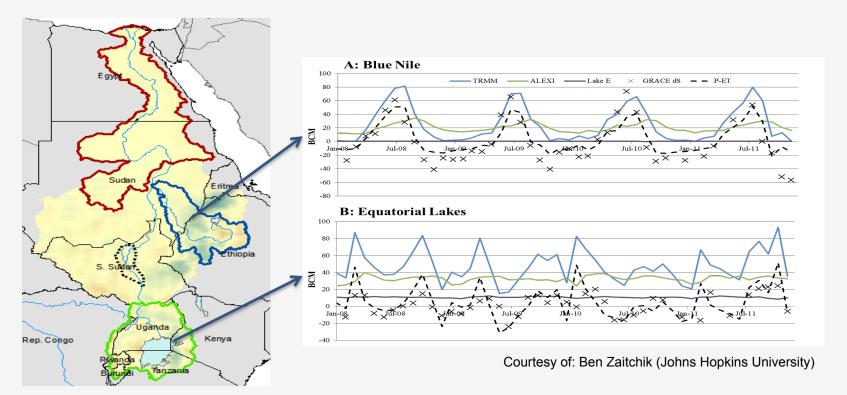
Flood & Drought Management

Reservoir & Dam Management


Water Budget

- Precipitation
- Soil Moisture
- Evapotranspiration
- Precipitation
- Runoff/Streamflow
- Soil Moisture
- Evapotranspiration
- Groundwater

- Reservoir Height
- Precipitation
- Runoff/Streamflow


Monitoring Water Balance in the Nile Basin

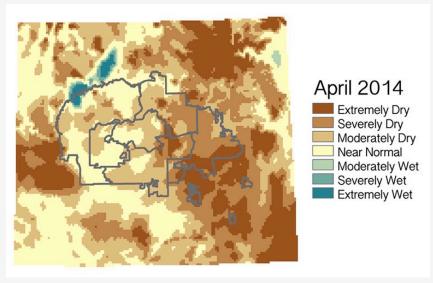
NASA Observations and Modeling Systems Capabilities


Applied Sciences Project Scientist: Ben Zaitchik (Johns Hopkins University)

Scale Water Balance in the Nile Basin Based on TRMM, ALEXI, LDAS, and GRACE

Irrigation Management Using Satellite-Based ET

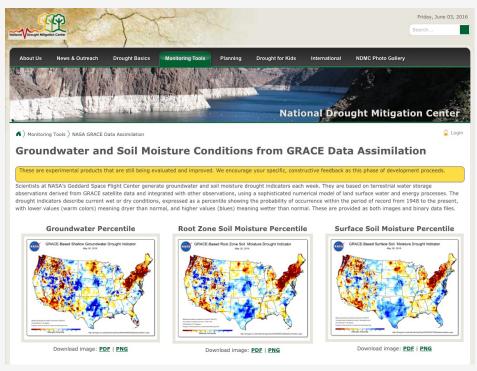
Based on the Terrestrial Observation and Prediction System (TOPS)



http://ecocast.arc.nasa.gov/dgw/sims

Courtesy of: Forest Melton, NASA ARC-CREST/California State University

Drought Monitoring Decision Support Tool for the Navajo Nation Based on TRMM and GPM

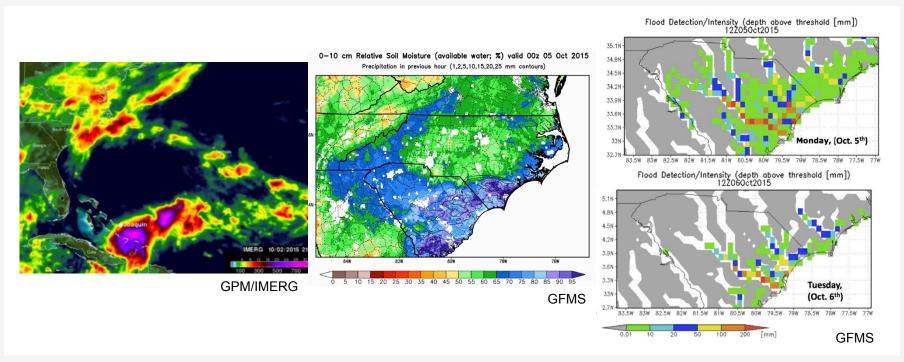


A Drought Monitoring Decision Support Tool for Customized Calculation of a Standardized Precipitation Index Value in the Navajo Nation, 2015 DEVELOP project. Based on precipitation indexes from TRMM and GPM

- The Navajo Nation has been impacted by
 - Severe droughts
 - Lack of domestic water infrastructure
 - Lack of economic resources
- Roughly 1/3 of population are without access to potable water in their homes
- Created geodatabase of historical climate information specific to the area

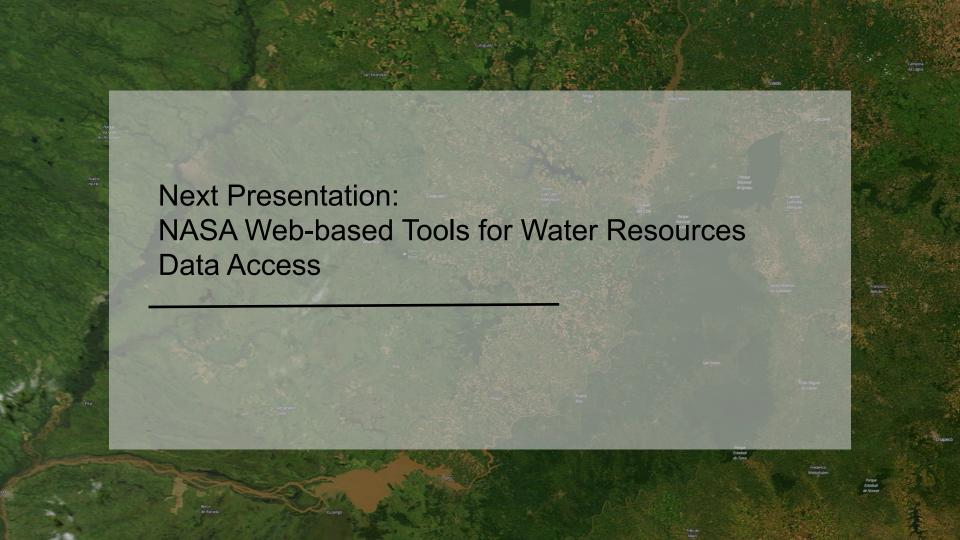
National Drought Mitigation Center (NDMC)

Based on GRACE



- Combines GRACE measurements of water storage with meteorological data
- Generates groundwater and soil moisture percentile maps
- 1948-present

http://drought.unl.edu/MonitoringTools/NASAGRACEDataAssimilation.aspx


Extreme Precipitation, Relative Soil Moisture, & Flood Detection Based on GPM and Global Flood Monitoring System (GFMS)

2015 South Carolina Flooding

Questions

- 1. Which satellite(s) carry the MODIS sensor?
- 2. Which satellite(s) carries dual precipitation radar?
- 3. The Landsat mission is a series of satellites starting in 1972? Which is the current Landsat mission?
- 4. Which satellite mission is useful for estimating ground water?

