

ARSET Applied Remote Sensing Training

http://arset.gsfc.nasa.gov

🍠 @NASAARSET

nta Helena

Parque

an Pedro

NASA Flood Monitoring and Mapping Tools

www.nasa.gov

Outline

- Overview of Flood Monitoring Tools Based on Remote Sensing
 Observations
 - Global Flood Monitoring System (GFMS)
 - Extreme Rainfall Detection System-2 (ERDS2)
 - MODIS Near Real Time (NRT) Flood Mapping
 - Dartmouth Flood Observatory (DFO)
- Demonstration of GFMS, ERDS2, MODIS NRT and DFO

Overview of Flood Monitoring Tools Based on Remote Sensing Observations

NASA Remote Sensing Observations for Flood Monitoring

https://arset.gsfc.nasa.gov/disasters/webinars/advfloodwebinar

There are primarily **3 types** of flood monitoring tools that use remote sensing observations:

- 1. Derive streamflow & runoff to monitor flooding conditions by using rainfall and weather data in a hydrology model
- 2. Infer flooding conditions by using satellite-derived precipitation
- 3. Detect flood water on previously dry land surfaces by using satellite-derived land-cover observations

Flood Monitoring Using NASA Rainfall Observations

- 1. Derive streamflow & runoff to monitor flooding conditions by using rainfall and weather data in a hydrology model
 - -Global Flood Monitoring System (GFMS) http://flood.umd.edu
 - NASA and U.S. Agency for International Development SERVIR: <u>http://www.servirglobal.net</u>
- 2. Infer flooding conditions by using satellite-derived precipitation
 - Extreme Rainfall Detection System (ERDS): <u>http://erds.ithacaweb.org/</u>
- 3. Detect flood water on previously dry land surfaces by using satellitederived land-cover observations

NASA Rainfall Observations Used in GFMS, SERVIR, & ERDS2 TRMM Multi-satellite Precipitation Analysis (TMPA)

- Combines precipitation from TRMM and several national/international satellites to obtain 3-hourly, 0.25°x0.25° resolution data with global coverage between 50°S to 50°N
- TMPA will be replaced with Integrated Multi-SatellitE Retrievals (IMERG) for Global Precipitation Measurement (GPM)

data with half-hourly, 0.1°x0.1° resolution and **global coverage between** 65°S to 65°N

Note: TRMM is no longer flying, but TRMM-based calibration is used to provide near real-time rainfall from a constellation of national & international satellites for flooding applications. Near real-time IMERG data is also available from: <u>ftp://jsimpson.pps.eosdis.nasa.gov</u>

SERVIR GLOBAL

http://servirglobal.net

- Works in 30 countries
- Remote Sensing-based data products and training available via websites
- Flood monitoring and mapping based on TMPA rainfall and CREST hydrological model

SERVIR Product Catalog Welcome to the SERVIR Global Product Catalog, a searchable clearinghouse of our applications, projects, and toos.

Global Flood Monitoring System (GFMS)

GFMS

http://flood.umd.edu

Provides global maps, time series, and animations (50°S-50°N) of:

- Instantaneous Rain
- Accumulated rain over 24, 72, and 168 hours
- Streamflow rates and flood detection at 1/8th degree (~12 km) and also at 1 km

GFMS Features

http://flood.umd.edu

- Map navigation
- Zoom in/out
- Select individual grid point for data for time sequence
- Plot different variables
- 3-hourly output

Flooding in Bolivia – January 26, 2014

http://flood.umd.edu

National Aeronautics and Space Administration

Extreme Rainfall Detection System (ERDS)

ERDS

http://erds.ithacaweb.org/

- Near real-time TRMM and NOAA-Global Forecasting System (GFS) data for monitoring & forecasting accumulated rainfall
- TRMM historical archive is used for calculation of extreme rainfall thresholds
- TRMM near real-time rainfall amount, GFS forecasted rainfall information, & reference data combine to generate flooding eventspecific information

ERDS

http://erds.ithacaweb.org/

- Global maps and time series of near real-time (50°S-50°N) and forecasted accumulated rainfall over 24, 48, 72, 96, 120 & 144 hours
- Extreme rainfall alerts at 0.25°x0.25° level and at administrative districts level
- Event-specific information, including:
 - the list of the affected countries
 - an estimation of the affected population
- Currently the ERDS system is one of the tools used by OMEP, UN World Food Programme (WFP) Emergency Preparedness Unit

ERDS Alerts

NASA Remote Sensing Observations for Flood Monitoring

https://arset.gsfc.nasa.gov/disasters/webinars/advfloodwebinar

There are primarily **3 types** of flood monitoring tools that use remote sensing observations:

- 1. Derive streamflow & runoff to monitor flooding conditions by using rainfall and weather data in a hydrology model
- 2. Infer flooding conditions by using satellite-derived precipitation
- 3. Detect flood water on previously dry land surfaces by using satellite-derived land-cover observations

Inundation Mapping

Using Satellite-Derived Land-Cover Observations

- 3. Detect flood water on previously dry land surfaces by using satellite-derived land-cover observations
 - MODIS NRT Global Flood Mapping: <u>http://oas.gsfc.nasa.gov/floodmap</u>
 - Dartmouth Flood Observatory: <u>http://floodobservatory.colorado.edu</u>

Inundation Mapping

Using Terra/Aqua MODerate Resolution Imaging Spectroradiometer (MODIS)

- MODIS provides observations of land surface
- Reflectance from bands indicate presence of water on previously dry land
 - 1 (620-670nm)
 - 2 (841-876 nm)
 - 7 (2105-2155nm)
- Global reference database of water bodies formed at 250m resolution
- MODIS cannot see the surface through clouds

Flooding along the White Nile, Sudan earthobservatory.nasa.gov

MODIS-Aqua 6/19/2003 MODIS- Terra 8/11/2003

MODIS Near Real-Time Global Flood Mapping

MODIS NRT Global Flood Mapping

- Flood mapping based on MODIS reflectance at 250m resolution
- Composited on 2, 3, and 14 days
- Flood maps available in 10°x10° tile
- Permanent water and surface flood water data available
- Cloud shadows or terrain shadows can be misinterpreted as surface water

Provides near real-time and past flood mapping from April 2011.

http://oas.gsfc.nasa.gov/floodmap

MODIS NRT Global Flood Mapping: Available Quantities

http://oas.gsfc.nasa.gov/floodmap

Products	Available Downloads					
MODIS Flood Map	MFM	png				
MODIS Flood Water	MFW	shapefile (.zip) KMZ			
MODIS Surface Water	MSW	shapefile (.zip) KM				
MODIS Water Product	MWP	geotiff				
README		pdf	txt			
Check slide show for the last 10 days.						

MODIS Flood Mapping: Flooding in Southern Brazil 12-14, 2016

3-day Composite

Filename Convention:

MODIS Flood Mapping: Flooding in Southern Brazil 12-14, 2016

3 Day Composite	2 Day Composite 1 Day	Composite 14 Day Composite)				
« June 2016 »		Products	Products		wnloads	N		
S M T W T	FS	MODIS Flood Map	MFM	png Û				Û
1 2 5 6 7 8 9	3 4 10 11	MODIS Flood Water	MFW	percent (.tif)	any (.tif)	any (.shp)	any (.kmz)	$\mathscr{W} := :\mathscr{E}$
12 13 14 15 16 19 20 21 22 23	17 18 24 25	MODIS Surface Water	мsw	percent (.tif)	any (.tif)	any (.shp)	any (.kmz)	S
26 27 28 29 30		README		pdf	txt			

Composites of the previous 14 days' 3-day product

Similar filename convention with additional processing for composite field:

N: No shadow masking

- T: Terrain shadow masking
- C: Cloud shadow masking
- S: Both terrain & shadow masking

e.g. 2D2OT:

2 days imagery, 2 observations required, terrain shadow masking applied

- Provides occurrence of water as % clear observations over the last 14 days' products
 - GeoTIFF are 0-1 images (1 if % water is >0)

The Dartmouth Flood Observatory (DFO)

DFO

http://floodobservatory.colorado.edu

- Uses flood mapping based on MODIS reflectance
- Also uses Landsat-8 and EO-1 images and COSMO-SkyMed and Sentinel-1 synthetic aperture radar (SAR) images when available
- Experimental river discharge obtained by using Microwave data (AMSR, AMSR-2, TMI, GMI0 and a run-off model

Provides near-real time flood mapping and current/past flood event mapping

DFO Flood Event Mapping

Red: Flooding within past 14 days (MODIS animated product)

Light Red: Flooding during this event (earlier MODIS coverage of non-automated MODIS mapping)

Dark Blue: Permanent water, Feb 2000 (Shuttle Water Boundary Data)

Darker Red: Flooded areas (High resolution SAR or Landsat 8 data)

Bright Green: Past Floods

Colored dots show access River Watch Site

DFO Experimental River Watch

http://floodobservatory.colorado.edu

- Sensitive to portions of water and dry land:
 - Advanced Microwave Scanning Radiometer-2 from GCOM-W (Japanese Space Agency Mission)
 - TRMM Microwave Imager (ended 8 April 2015)
 - GPM Microwave Imager
- These microwave observations are converted to actual river discharge by combining them with surface discharge measurements and then to runoff by using a Water Balance Model (WBM)
- Runoff calculations are available starting in 2003, seven-day runoff deviation started in 2003-2007
- Mean runoff is mapped to indicate low, normal, moderate, and major flooding

DFO River Watch Locations

http://floodobservatory.colorado.edu

DFO River Watch Paraguay

http://floodobservatory.colorado.edu

DFO River Watch Paraguay

http://floodobservatory.colorado.edu

River Watch Version 2

Experimental Satellite-Based River Discharge Measurements using passive microwave radiometry DFO Site Number Site 854 (Paraguay) Tebicuary Center: -57.194 Long. **GFDS Site Number** 845 River Center: -26.505 Lat. DRAFT Paraguay 67905 WBM contributing area sq km Last measured: 19-Jun-16 Obtain Data (1, low flow; 2, normal flow; 3, moderate flood; 4, major flood, r >5 yr) Average Discharge: 562 m3/sec Status: 2 7-day Runoff #N/A (7-day runoff compared to 10 yr average for this date, 2003-2012) #N/A mm Recent Record Technical Summary 7 Day Centered Average Satellite Daily Discharge — Low Flow Threshold — 1.33 yr Flood 5 yr Flood ------ 10 yr Flood ------ 30 yr Flood 60000

Live Demonstration: GFMS

Live Demonstration: MODIS NRT

Overview Demo: ERDS

Overview Demo: DFO

Next: Hands-on Exercise of Flood Mapping