

ARSET Applied Remote Sensing Training http://arset.gsfc.nasa.gov

🍠 @NASAARSET

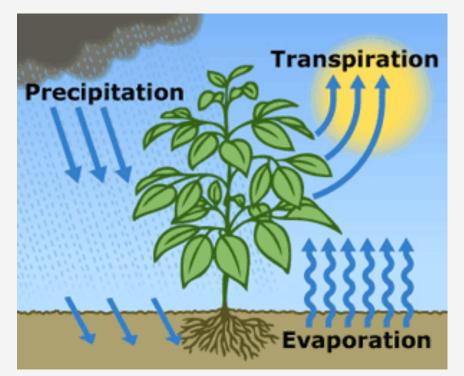
nta Helen

Parque

louazi.

NASA Evapotranspiration Data Products and Applications

www.nasa.gov

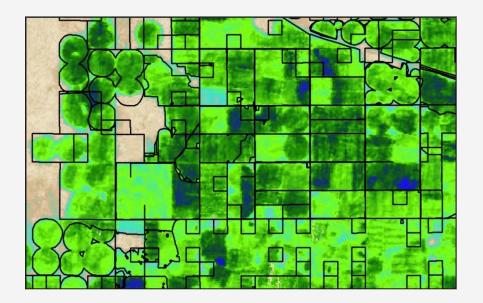

Outline

- About Evapotranspiration (ET)
- Methods of Estimating ET Based on Remote Sensing
- ET Data Products Based on Remote Sensing
- Applications of ET data
- Demonstration of a Web Tool to Access Landsat-Based ET

About Evapotranspiration

What is evapotranspiration (ET)?

- The sum of evaporation from the land surface plus transpiration from plants
- ET transfers water from land surface to the atmosphere in vapor form
- Energy is required for ET to take place (for changing liquid water into vapor)


Source:	USGS
Source.	0363

Importance of ET

- Critical component of the water and energy balance of climate-soil-vegetation interactions
- Useful for:
 - determining agricultural water consumption
 - assessing drought conditions
 - developing water budgets
 - monitoring aquifer depletion
 - monitoring crops and carbon budgets

Challenges in Measuring ET

- ET depends on many variables:
 - solar radiation at the surface
 - land and air temperatures
 - humidity
 - surface winds
 - soil conditions
 - vegetation cover and types
- Highly variable in space and time

ET Ground Measurements

- Limitation
 - They are point measurements and cannot capture spatial variability

Eddy Flux Towers

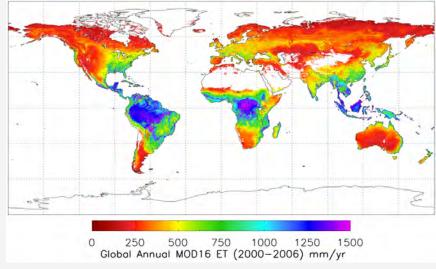

Lysimeters

Image Credit: Rick Allen, University of Idaho

Benefits of Estimating ET from Remote Sensing Data

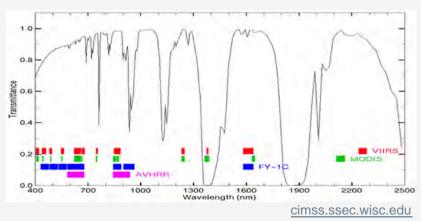
- Provide relatively frequent and spatially continuous measurement of biophysical variables used in estimating ET at different spatial scales including:
 - radiation
 - land surface temperatures
 - vegetation coverage and density
 - precipitation
 - soil moisture
 - weather and climate variables

Global ET Based on MODIS Averaged over 2000-2006

http://ntsg.umt.edu/project/mod16

Methods of Estimating ET Based on Remote Sensing

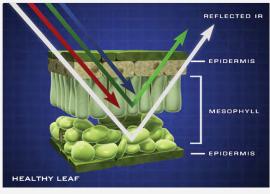
Remote Sensors and Observations for ET

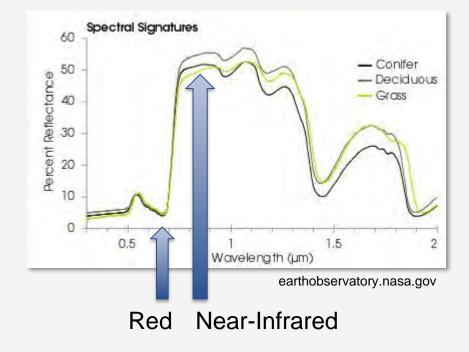

Satellite	Sensor	Parameter
Terra and Aqua	MODIS	Normalize vegetation Index (NDVI) Leaf Area Index (LAI) Albedo (fraction of surface solar radiation reflected back)
Landsat	OLI, ETM+	Spectral Reflectance

MODerate Resolution Imaging Spectroradiometer (MODIS) http://modis.gsfc.nasa.gov

- On-board Terra and Aqua
- Designed for land, atmosphere, ocean, and cryosphere observations
- Spatial Coverage and Resolution:
 - Global, Swath: 2,330km
 - Spatial Resolution Varies: 250m, 500m, 1km
- Temporal Coverage and Resolution:
 - 2000-present, 2 times per day

Spectral Bands

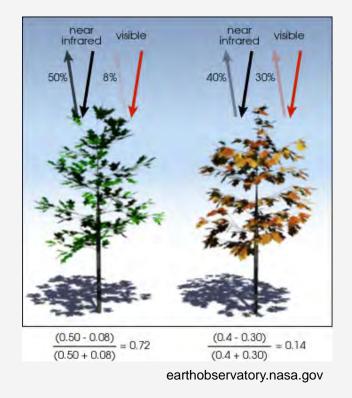

- 36 bands (red, blue, IR, NIR, MIR)
 - Bands 1-2: 250m
 - Bands 3-7: 500m
 - Bands 8-16: 1000m


MODIS Normalized Vegetation Index

http://arset.gsfc.nasa.gov/land/webinars/advancedNDVI

- Based on the relationship between red and near-infrared wavelengths
 - chlorophyll strongly absorbs visible (red)
 - plant structure strongly reflects nearinfrared

missionscience.hq.nasa.gov; Credit: Jeff Carns

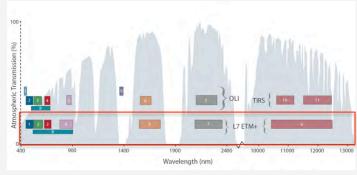


NDVI Formula

http://earthobservatory.nasa.gov/Features/MeasuringVegetation

- $NDVI = \frac{Near-Infrared Red}{Near-Infrared + Red}$
- Values range from -1.0 1.0
 - Negative values 0 mean no green leaves
 - Values close to 1 indicate the highest possible density of green leaves
- Other relevant MODIS products:
 - Leaf Area Index
 - Land Cover
 - Albedo
 - More info:

http://lpdaac.usgs.gov/dataset_discovery/modis/ modis_products_table

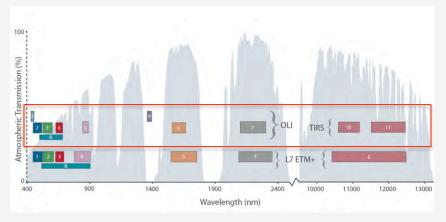

Enhanced Thematic Mapper (ETM+)

http://geo.arc.nasa.gov/sge/landsat/l7.html

- Onboard <u>Landsat-7</u>
- Polar orbiting satellite
- Spatial Coverage and Resolution:
 - Global, Swath: 185km
 - Spatial Resolution: 15m, 30m, 60m
- Temporal Coverage and Resolution:
 - April 15, 1999-present
 - 16-day revisit time

Spectral Bands

- 8 bands (blue-green, green, red, reflected & thermal IR, panchromatic)
 - <u>Bands 1-5, 7: 30m</u>
 - Band 6: 60m
 - Band 8:15m


Operational Land Imager (OLI)

http://landsat.usgs.gov/landsat8.php; http://landsat.gsfc.nasa.gov/?p=5779

- Onboard Landsat-8
- Polar orbiting satellite
- Spatial Coverage and Resolution:
 - Global, Swath: 185km
 - Spatial resolution: 15m, 30m
- Temporal Coverage and Resolution:
 - Feb 11, 2013 present
 - 16-day revisit time

Spectral Bands

- 9 bands (blue-green, green, red, near IR, shortwave and thermal IR)
 - <u>Bands 1-7, 9: 30m</u>
 - Band 8:15m

Importance of Landsat for ET

- Landsat allows field-level ET (30m resolution), much higher resolution than MODIS-based ET (1 km)
- Landsat has a thermal band that is important for some ET approaches

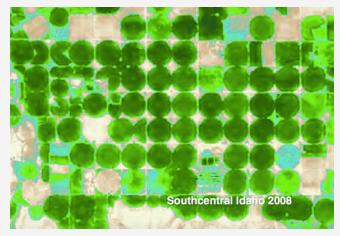


Image Credit: Richard Allen, University of Idaho

Landsat Bands

What is important for ET?

Ultraviolet

Visible

Near

Infrared

Mid

Infrared

- Band 3: Red
 - Chlorophyll absorption band for vegetation discrimination
 - Carotene and xanthophylls reflectance (dead foliage)
- Band 4: Near-Infrared
 - Internal leaf tissue strongly reflective (decreases as stress increases)
 Differentiation between evergreen & deciduous vegetation
- Bands 5 & 7: Mid-Infrared
 - Moisture content of soil and vegetation
 - Contrast between vegetation types
- Band 8: Thermal
 - Solar reflectance
- Thermal Emitted heat

Estimation of ET – not easy!

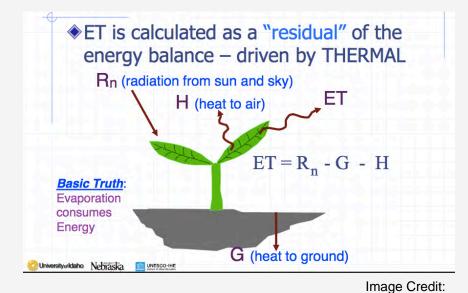
- ET can be derived primarily from:
 - Surface Water Balance
 - ET=Precipitation + Irrigation Runoff Ground Water + Vertical Water Transport
 - ± Subsurface Flow ± Soil Water Content
 - Surface Energy Balance
 ET (Latent Heat Flux) = Net Surface Radiation Ground Heat Flux Sensible Heating
 Flux
 - Meteorological and Vegetation/Crop Data (Penman-Monteith Equation)

*Reference: http://www.fao.org/docrep/X0490E/x0490e04.htm#determining%20evapotranspiration

ET Estimation by Land Surface Models

Global Land Data Assimilation System (GLDAS): http://ldas.gsfc.nasa.gov

 Integrate satellite and ground observations within sophisticated numerical models based on water and energy balance methods

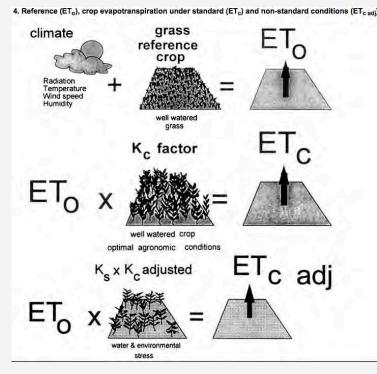

Remote Sensing Inputs

- Surface Solar Radiation
 - from atmospheric models with satellite data assimilation
- Precipitation (TRMM and Multi-Satellites)
- Vegetation Classification & Leaf Area Index (MODIS & AVHRR)
- Topography (Landsat)

Integrate Outputs

- Soil Moisture
- Evapotranspiration
 - Surface/Sub-surface Runoff
 - Snow Water Equivalent

ET Estimation by Surface Energy Balance



 Used by multiple groups to develop ET products

- Uses MODIS & Landsat
 - land surface temperatures
 - land cover

https://c3.nasa.gov/water/static/media/other/Day1_S3-3_Allen.pdf

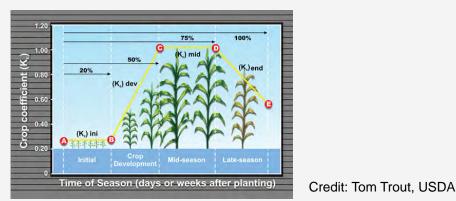
ET Estimation from Vegetation and Crop Information

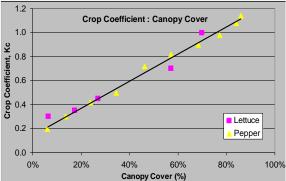
- ET_o: reference ET for well-watered grass reference (Penman-Moneith Equation)
- ET_c: crop ET for standard crop conditions:
 - disease free, well fertilized, grown in large fields, optimum soil water conditions, achieving full production under given climatic conditions
- ET_{c adj}: adjusted for non-standard crop conditions
- K_c: crop coefficient

*Reference: http://www.fao.org/docrep/X0490E/x0490e04.htm#determining%20evapotranspiration

Penman-Monteith Equation for ET_o

$$\lambda ET = \frac{\Delta(R_n - G) + \rho_a c_p \frac{(e_s - e_a)}{r_a}}{\Delta + \gamma \left(1 + \frac{r_s}{r_a}\right)}$$


- R_n: net surface radiation
- G: ground heat flux
- (e_s-e_a): vapor pressure deficit
- r_a & r_s: aerodynamic & surface resistance
- γ: psychrometric constant
- λ: latent heat constant
- c_p: specific heat constant


- Requires climate and crop information
- r_a & r_s depend on Vegetation Height, Leaf Area Index (LAI)
- R_n depends on the fractional solar radiation reflected back from the surface (albedo)
- LAI and albedo are both available from MODIS

*Reference: http://www.fao.org/docrep/X0490E/x0490e06.htm#penman%20monteith%20equation

Crop Coefficient (K_c) and Normalized Vegetation Index (NDVI)

- K_c is related to light interception (ground cover)
- There is a direct relationship between $\rm K_{c}$ and NDVI
 - available from MODIS

ET Data Products Based on Remote Sensing

Parque Estadua

ET Data Products Based on Remote Sensing Observations Global Products

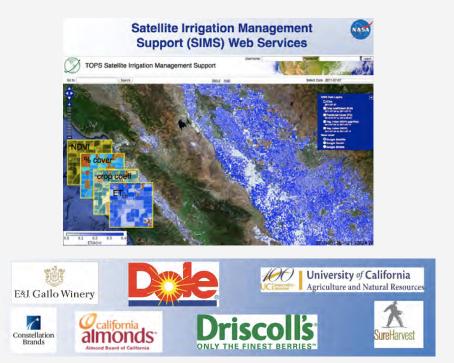
- MOD16: MODIS Global Evapotranspiration Project
 - http://ntsg.umt.edu/project/mod16
- METRIC: Mapping EvapoTranspiration with high-Resolution and Internalized Calibration
 - https://c3.nasa.gov/water/static/media/other/Day1 S1-3 Anderson.pdf
 - http://eeflux-level1.appspot.com
- ALEXI: Atmosphere-Land Exchange Inverse Model
 - https://c3.nasa.gov/water/static/media/other/Day1 S1-4 Anderson.pdf
 - http://www.ospo.noaa.gov/Products/land/getd/index.html
- GLDAS: Global Land Data Assimilation System
 - http://ldas.gsfc.nasa.gov/gldas/

ET Data Products Based on Remote Sensing Observations Regional Products: can be adapted for other regions

- SIMS: Satellite Irrigation Management Support (California)
 - https://c3.nasa.gov/water/static/media/other/Day1 S2-2 Melton.pdf
- NLDAS: North American Land Data Assimilation System (North America)
 - <u>http://ldas.gsfc.nasa.gov/nldas</u>
- SSEBop: Operational Simplified Surface Energy Balance (US & Africa)
 - http://www2.usgs.gov/climate landuse/lcs/projects/wsmartet.asp
- ETWatch: Multi-Satellite Based Energy Balance Model (China)
 - https://c3.nasa.gov/water/static/media/other/Day2 S1-4 Wu 2.pdf

Summary: Publically Available Global ET Products

ET Source	Method	Remote Sensing Observations
GLDAS	Land Surface Model Water and Energy Balance	TRMM and multi-satellite Precipitation MODIS and AVHRR Land Cover Landsat Topography
MOD16	Normalized Vegetation Index (NDVI) –based Model	MODIS
METRIC	Energy Balance	Landsat
ALEXI	Energy Balance	MODIS, Landsat, GOES


Summary: Publicly Available Global ET Products

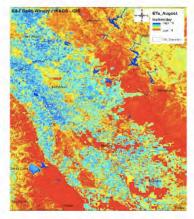
ET Sources	Spatial/Temporal Resolutions	Data Source	Availability
GLDAS	 1/8th-1 degree (Global) 3-hour, monthly 1979 – May 2016 1979 – 2010 	NASA/NOAAMiradorGiovanni	 <u>http://mirador.gsfc.nasa.gov</u> <u>http://giovanni.gsfc.nasa.gov/</u> <u>giovanni</u>
MOD16	 1km (Global) 8-day, Monthly 2000 – 2014 (will be extended to present) 	 University of Montana 	 <u>http://ntsg.umt.edu/project/mod16</u>
METRIC	 30m (Global) 2011 – March 2016 	 Google Earth Engine Evapotranspiration Flux (EEFlux) 	 <u>http://eeflux-level1.appspot.com</u>
ALEXI (GOES)	 8km (will be available globally from MODIS) Daily, 2-12 week composites 	• NOAA	 <u>http://www.ospo.noaa.gov/</u> <u>Products/land/getd/index.html</u>

Applications of ET

ET for Irrigation Management http://ecocast.arc.nasa.gov/simsi/

- Beta web interface complete
- Webtool publicly accessible
- Being tested by multiple growers
- Integrated with UCCE CropManage irrigation management tool
- Prototype calculator for on-farm water use efficient metrics completed

*Reference: https://c3.nasa.gov/water/static/media/other/Day1_S2-2_Melton.pdf

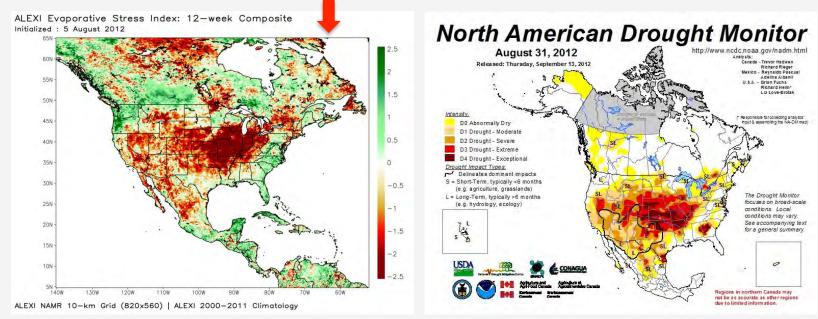

ET for Irrigation Management

http://ecocast.arc.nasa.gov/simsi/

 Landsat-based ET helps wine producers and grape growers in CA plan timing and amount of irrigation Mapping Evapo-Transpiration at high Resolution with Internalized Calibration (RetAlement)

Science – Actual ET

 Gallo's analysts were trained by Dr Rick Allen to allow for on premise runs of METRIC

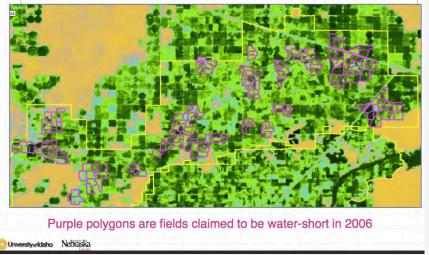

Business

- Some of the benefits that Gallo observed in the last years of using Landsat imagery & METRIC include:
 - Decrease in the amount of water applied by 20–30 percent, subject to region,
 - Improved water management with the ability to run a seasonal water balance,
 - Development of more efficient seasonal irrigation schedules,
 - Improvement in grape quality which leads to improved wine quality,
 - Upward movement in the wine program, due to higher grape quality, leading to an increase in bottle price and an increase in revenue,
 - Reduced trimming of excess leaf canopies from over-irrigation,
 - Decrease in the cost of irrigation from reduction of water and energy used,
 - Using current year's data of water allocation to determine and plan next year's allocation.

*Reference: https://c3.nasa.gov/water/static/media/other/Day1_S2-3_Mendez.pdf

ET for Drought Monitoring Over North America

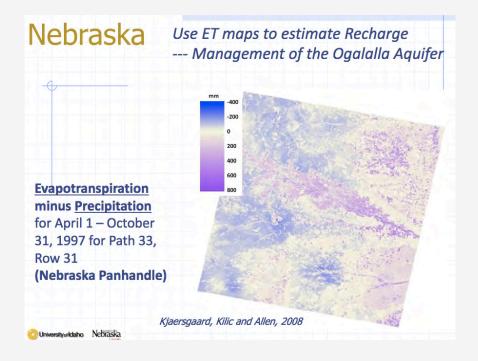
• ALEXI Evaporative Stress Index showing drought condition



*Reference: https://c3.nasa.gov/water/static/media/other/Day2_S1-7_Hain.pdf

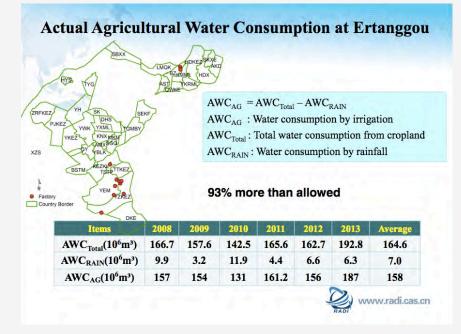
ET for Water Allocation

- METRIC ET used for deciding water deficit
- Example
 - based on the ET and NDVI analysis, Idaho Department of Water Resources verified that certain fields claimed to be water deficient were not

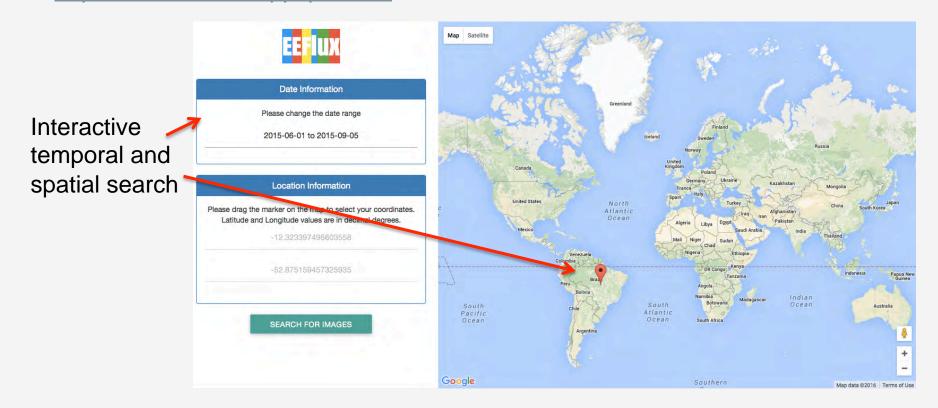


*Reference: https://c3.nasa.gov/water/static/media/other/Day1_S1-3_Allen.pdf

ET Used in Planning for Aquifer Management

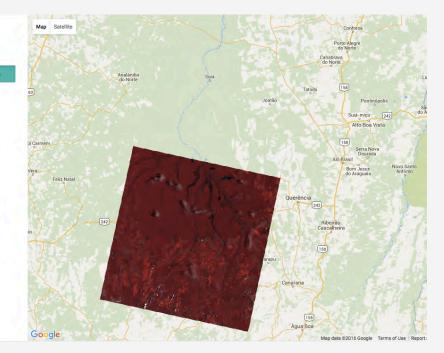

• METRIC ET, together with precipitation, helped estimate Ogalalla Aquifer recharging

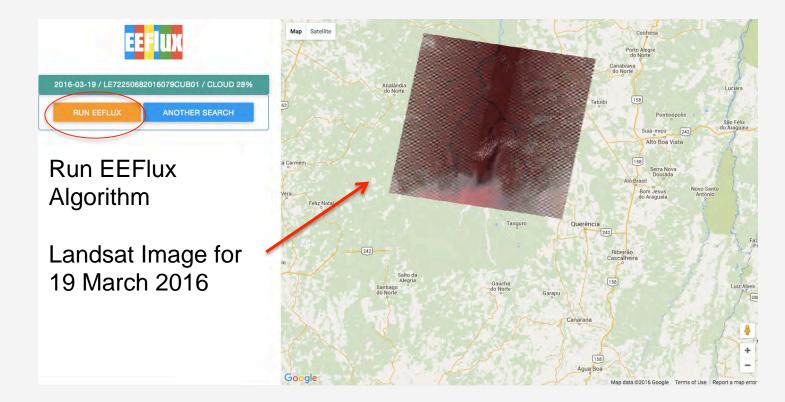
*Reference: <u>https://c3.nasa.gov/water/static/media/other/Day1_S1-3_Allen.pdf</u>


ET Used in Agricultural Water Use in China

- Based on ET from ETWATCH and rainfall data excessive use of water for agriculture was noted 2008-2013
- Very useful for planning water resource allocation

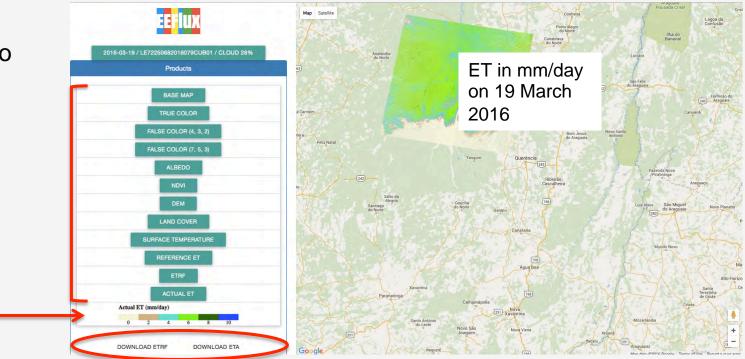
Demonstration of a Web Tool for Landsat-Based ET Data Access


EEFlux : Google Earth Engine Based METRIC ET http://eeflux-level1.appspot.com


EEFlux : Google Earth Engine Based METRIC ET http://eeflux-level1.appspot.com

Landsat image selection from specified time range with % cloud cover selection

2016-02-08 / LC82250692016039LGN00 / CLOUD 2% 2016-01-15 / LE72250682016015ASN00 / Cloud 83% 2016-01-31 / LE72250682016031ASN00 / Cloud 68% 2016-02-16 / LE72250682016047CUB01 / Cloud 17% 2016-03-03 / LE72250682016063CUB00 / Cloud 62% 2016-03-19 / LE72250682016079CUB01 / Cloud 28% 2016-01-15 / LE72250692016015CUB00 / Cloud 83% 2016-01-31 / LE72250692016031ASN00 / Cloud 58% 2016-02-16 / LE72250692016047CUB01 / Cloud 22% 2016-03-03 / LE72250692016063CUB00 / Cloud 51% 2016-02-08 / LC82250682016039LGN00 / Cloud 7% 2016-02-24 / LC82250682016055LGN00 / Cloud 36% 2016-03-27 / LC82250682016087LGN00 / Cloud 72% 2016-02-08 / LC82250692016039LGN00 / Cloud 2% 2016-02-24 / LC82250692016055LGN00 / Cloud 70% 2016-03-11 / LC82250692016071LGN00 / Cloud 80% 2016-03-27 / LC82250692016087LGN00 / Cloud 75%


EEFlux : Google Earth Engine Based METRIC ET http://eeflux-level1.appspot.com

EEFlux : Google Earth Engine Based METRIC ET

http://eeflux-level1.appspot.com

Select parameter to plot and download

Summary

- Evapotranspiration is not measured, but calculated by water and/or energy balance methods
- Requires complex algorithm and a variety of climate land surface data
- Multiple algorithms for estimating ET are available validation and intercomparison for regional use are recommended
- Remote sensing data from Landsat and MODIS (land surface temperature, land cover, vegetation index, leaf area index, albedo) are very useful in estimating ET
- For more information, see resources on remote sensing based ET methodologies and applications from a 2013 International Workshop organized by NASA and the World Bank: <u>https://c3.nasa.gov/water/resources/10/</u>