SMAP Calibration and Validation

Cal/Val Methodology

Methodology	Role	Analysis tools and readiness
Core Validation Sites	Accurate estimates of products at matching scales for a set of conditions with spatially distributed in situ sensors	 ✓ Data transfer from Cal/Val Partners set up and/or automated ✓ Scaling methods defined ✓ Offset grid processing
Sparse Networks	One point in the grid cell for a wide range of conditions	 ✓ Triple collocation method tool completed ✓ Data transfer from Cal/Val Partners automated
Satellite Products	Estimates over a very wide range of conditions at matching scales	 ✓ Cross comparison tools developed for SMOS, GCOM- W and Aquarius ✓ Task Group formed
Model Products	Estimates over a very wide range of conditions at matching scales	 Developed high-res 3 and 9 km model products Statistical comparison methods developed
Field Campaigns	Detailed assessment of the scaling issues for a set of high priority conditions	 ✓ SMAPVEx15 and 16 campaigns defined ✓ Australia campaign in 2015

SMAP Cal/Val Sites

Comparison Between SMAP and In Situ Soil Moisture

SMAP Applications

Value of Soil Moisture Data to Weather and Climate

Seasonal Climate Predictability

Predictability of **seasonal climate** is dependent on boundary conditions such as sea surface temperature (SST) and soil moisture – **soil moisture** is particularly important over continental interiors.

Rainfall Prediction

Value of Soil Moisture Data to Weather and Climate

Seasonal Climate Predictability

Predictability of **seasonal climate** is dependent on boundary conditions such as sea surface temperature (SST) and soil moisture – **soil moisture** is particularly important over continental interiors.

Rainfall

A Flood Example

Application of a SMAP-Based Index for Flood Forecasting in Data-Poor Regions

Current Capability: The UN-WFP uses satellite derived flood maps to locate floods and map delivery routes to affected areas.

Enhanced Capability: Use SMAP to expand their current flood database with look-up information that produces flood indices for a given rainfall forecast (ECMWF) and soil moisture condition (SMAP). **Study Area:** Zambezi basin and its delta in Mozambique.

Crop Yield Modeling

Agricultural models have been developed to predict the yield of various crops at field and regional scales. One key input of the agricultural models is soil moisture. The conceptual diagram relates variation in regional domain-averaged soil moisture to variation in total crop yield. Statistical analysis would lead to the development of probability distributions of crop yield as a transformation of the probability distribution of domain averaged soil moisture at the beginning of the growing season.

Predicting Vector-Borne Diseases

SMAP Applications Early Adopters

http://smap.jpl.nasa.gov/applications

SMAP Early Adopters video

This diverse group represents a cross-section of end-users of SMAP data who collaborate to ensure integration of SMAP data into operations that affect our day-to-day lives. Examples include the U.S. Forest Service, the UN World Food Programme, and the U.S. Department of Agriculture.

VTT files: English (VTT, 18 KB) | Italian (VTT, 18 KB) | Spanish (VTT, 19 KB)

Early Adopters

SMAP Early Adopters [†] , SMAP project contacts, and a	pplied research topics. Many Early Adopters cross		
multiple applications.			
Early Adopter PI and institution	Applied Research Topic		
SMAP Contact			
Weather and Climate Forecasting			
* Stephane Bélair, Meteorological Research Division, Environment	Assimilation and impact evaluation of observations from the		
Canada (EC); SMAP Contact: Stephane Bélair	SMAP mission in Environment Canada's Environmental		
	Prediction Systems		
* Lars Isaksen and Patricia de Rosnay, European Centre for	Monitoring SMAP soil moisture and brightness temperature at		
Medium-Range Weather Forecasts (ECMWF); SMAP Contact: Eni	ECMWF		
Njoku			
* Xiwu Zhan, Michael Ek, John Simko and Weizhong Zheng,	Transition of NASA SMAP research products to NOAA		
NOAA National Centers for Environmental Prediction (NCEP),	operational numerical weather and seasonal climate prediction		
NOAA National Environmental Satellite Data and Information	and research hydrological forecasts		
Service (NOAA-NESDIS); SMAP Contact: Randy Koster			
* Michael Ek, Marouane Temimi, Xiwu Zhan and Weizhong	Integration of SMAP freeze/thaw product line into the NOAA		
Zheng, NOAA National Centers for Environmental Prediction	NCEP weather forecast models		
(NCEP), NOAA National Environmental Satellite Data and			
Information Service (NOAA-NESDIS), City College of New York			
(CUNY); SMAP Contact: Chris Derksen			
* John Galantowicz, Atmospheric and Environmental Research, Inc.	Use of SMAP-derived inundation and soil moisture estimates		
(AER); SMAP Contact: John Kimball	in the quantification of biogenic greenhouse gas emissions		
◊ Jonathan Case, Clay Blankenship and Bradley Zavodsky,	Data assimilation of SMAP observations, and impact on		
NASA Short-term Prediction Research and Transition (SPoRT)	weather forecasts in a coupled simulation environment		
Center; SMAP Contact: Molly Brown	-		
Droughts and Wildfires			
* Jim Reardon and Gary Curcio, US Forest Service (USFS);	The use of SMAP soil moisture data to assess the wildfire		
SMAP Contact: Dara Entekhabi	potential of organic soils on the North Carolina Coastal Plain		
* Chris Funk, Amy McNally and James Verdin, USGS & UC	Incorporating soil moisture retrievals into the FEWS Land		
Santa Barbara; SMAP Contact: Molly Brown	Data Assimilation System (FLDAS)		
OBrian Wardlow and Mark Svoboda, Center for Advanced Land	Evaluation of SMAP soil moisture products for operational		
Management Technologies (CALMIT), National Drought Mitigation	drought monitoring: potential impact on the U.S. Drought		
Center (NDMC); SMAP Contact: Narendra Das	Monitor (USDM)		
0 Uma Shankar, The University of North Carolina at Chapel Hill –	Enhancement of a Bottom-up Fire Emissions Inventory Using		
Institute for the Environment; SMAP Contact: Narendra Das	Earth Observations to Improve Air Quality, Land Management		
	and Public Health Decision Support		
Floods and Landslides			
* Fiona Shaw, Willis, Global Analytics; SMAP Contact: Robert	A risk identification and analysis system for insurance; eQUIP		
Gurney	suite of custom catastrophe models, risk rating tools and risk		
	indices for insurance and reinsurance purposes		

