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The information transfer challenge — empowering local people

How can local communities obtain weather and drought
information to help them make decisions and developing
coping strategies?

/ Princeton’s

Providing
water

information

to users

Princeton University ?



some BIQ Challenges

1. ldentifying new sources of observational data to enhance real-time monitoring
and improve Iinitialization of forecasts; improving forecast skill at time and space
scales relevant for decision making

2. How knowledge/technology can be transferred to universities and practitioners
for sustainable solutions to achieving water and food security, and improve
livelihoods for mitigation and improved resilience?

3. Understanding the utility of climate/drought information to
(i) inform policy making at national scales and
(i) improve agricultural decision making at all levels
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Alternative pathways of information

delivery to users.

There is Potential to Improve Information Utility and

Transfer to Decision Makers

Information
Sources

Institutional Delivery
Aggregators Methods

Existing pathways may be
inefficient due to lack of
technology, understanding
and relevancy of the
information

Communities
& Users

Existing flows of information

—

Potential flows that can be
developed/enhanced

A more diverse suite of
institutional sources and
delivery mechanisms may
increase utility/specificity
of information for decision
making in a wider range of
contexts.
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Overcoming the Lack of Observations:
Potential of Low-Cost Environmental Sensors
Communicating over the Cell Network
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Commercial Application

Private-use of lecaldata
Local Public information on natural hazards

monitoring Open use of distributed data

There’s a large and rapidly growing
cellphone network in Latin America

The infrastructure is maintained by private sector
and is ubiquitous in populated areas
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How can global systems be enhanced with local information,
particularly in data sparse regions of the world?

Princeton University is developing low cost sensors to create
community level crop and drought networks




And communicating in real-time to local users
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Pods send SMS messages to a gateway that posts
messages onto the internet
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our usual loggers:

s

p UISC One button, no programming. One button, no programming.
Low cost, cellular, no wires. Low cost, cellular, no wires.
Recommendations & Analytics. Recommendations & Analytics.

For LTAR: Let the hardware be inexpensive, For LTAR: Share the data across the network.
easy to install, and ubiquitous. A pod in every plot. Don't get hung up on equipment, instead: the analysis.

DATA BANK
. APP API

ﬁl smart. simple. cheap. smart. simple. cheap.

ANALYTICS
PREDICTION

-

EBE

A

&lile)
- [BEBO



Merging Local Monitoring with Spatial Measurements

Generating high resolution precipitation.

combine the spatial variability, but poor accuracy of satellite data with

the local accuracy of rain gauges.
— Use the state — space linear estimation to correct the radar data with
rain gauges (Chirlin G. R. and Wood E. F., 1982).
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Current Status of the PulsePod system within the flood and
drought monitor

They are currently being field deployed in in the USA and Africa in a test
mode. This will assess the design elements as well as the robustness of
the sensors under actual conditions.

Algorithms have been developed to integrate the point measurements
with spatial measurements (e.g. satellite and model estimates).

Bringing the two elements together (point, in-situ data and spatial
estimates) will be completed in the near future.

ANY QUESTIONS??




7-Day and Seasonal Forecasting within the Flood
and Drought Monitor

Prof. Eric F. Wood
Princeton University

Implementation of the Latin-American and Caribbean Flood and
Drought Monitor:
Calibration and Validation by National Hydrological Services
17-18 November 2014
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Hydrologic Forecast Methodology

Historical Forcing
(T,P,U)

Un-Calibrated

Calibrated

Land surface model

. u

Hydrologic climatology

Initial State




Types of Drought and the Corresponding Forecasts

Short-term Forecasts:

7 to 14 days and usually based on dynamical weather models
(single model or multi-model). Particularly focused on flood
forecasting, heat waves, and alleviation of drought conditions.

Seasonal Drought Forecasts
Meteorological Drought:
Standardized Precipitation Index (SPI), 1 to 12 months; or
a Temperature based index
Agricultural Drought:
Based on soil moisture (e.g. SM percentiles), a evaporative
stress index or vegetation stress index (e.g. NDVI)
Hydrological Drought:
Based on streamflow percentiles, or reservoir percentiles
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7-Day Forecast Methodology

Numerical Weather Forecasts

NCEP Global
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(GFS)

Coarser resolution l

Historical Forcing
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Real-Time and 7-day Meteorological Data: Weather Model

Global Forecast System
1. Global weather forecasting model.

2. Run by NOAA (National Oceanic and
Atmospheric Administration).

3. Run every 6 hours at 00,06,12,18
hours UTC.

GFS analysis fields

- Initial conditions are necessary at the
beginning of each forecast.

- The Initial conditions come from
GDAS (Global data assimilation
system)

- Merge multiple data sources

GFS

Global Forecast System

Geo-stationary satelltes Polar-orbiting satellites
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7-day forecasting based on NCEP’s GFS

Latin American Flood and Drought Monitor @ Intercciive interface
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Streamflow Monitoring and Short-Term Forecasts

Streamflow

Water Balance
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Seasonal Forecast Methodology

Numerical Seasonal Forecasts

Historical Forcing
(T,P,U)
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Seasonal SPI-6 (6-month) forecast (for 11/14 from 10/14)

Latin American Flood and Drought Monitor Interactive Interface Basle Interface
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SPI6 for MAMJJA, 2011 & 2012

SP16: Prior 3-month (MAM) observation with the current (JJA) 3-month forecast
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SPI6 for MAMJJA, 2011 & 2012

SP16: Prior 3-month (MAM) observation with the current (JJA) 3-month forecast
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Hydrologic Forecast Methodology

Numerical Seasonal Forecasts

Ensemble Streamflow

Historical Forcing
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Ensemble Approach

Definition of the ensemble (or scenario) approach to forecasting

Scenario-based deterministic model
Multiple runs produce probabilistic values
Model states saved based on current conditions
Multiple input datasets used
Based on the historic record or short-term forecasts

Examples include Ensemble Streamflow Prediction (ESP)
. TN

P > J
;e . > %\ﬁ,f_j\ > Wmv“
i > ST i T
Scenario-based input Deterministic Multiple
(historic data / forecasts)  hydrologic model possible outputs
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ESP Technique

ESP scenario (ensemble) simulation uses current hydrologic
states with resampling historical or forecast meteorology

Starts the model at current model states

Resets to the current model states for each year
Each simulation begins with the same conditions

Conditional
Set Ensemble 1
Current . Wm’““w

conditions simulation

Ensemble 2 N(M\
1 simulation
Ensemble 3
‘ Current B WM\J—
conditions | simulation
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ESP Approach

Perfect retrospective Ensemble of met data (from
metdata to generate  forecasts or historical record) to

perfect ICs generate ensemble forecasts

v

Spin-up Forecast Window: 1 to 6 months

S Forecast
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Flow

ESP Technique = Risk Assessment

Low chance of this

Future / level flow or higher

Medium chance of
this level flow or

higher

High chance of this
level flow or higher

Time
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Summary

Numerical Seasonal Forecasts

LAFDM is an objective flood .i “(m";od"‘“ l m"l

drought.momtormg and CW\.,.,,_‘lml) | y i i

forecasting system. LAFDM can (ot g spraf _, Dowmeiog | F N

play a central role in between w..,.“.m..». ‘[%m’zlel

historic drought analysis and long- I PorscestPoring

term climate change projections. ﬁmtdiﬁm,\
| [ o state

A potential pathway forward for a

drought monitoring and ] sl v i eesgnriiats, |
forecasting system is to integrate
monitoring with seasonal
forecasting, but challenges exist
for data access and quality for
monitoring, and seasonal forecast
skill is insufficient for water and
food management.
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