

ATLAS de Zonas Áridas de América Latina y el Caribe

Elaborado por: Koen Verbist Fernando Santibañez Donald Gabriels Guido Soto

PHI-VII / Documento Técnico N°25

Proyecto realizado en el marco de UNESCO-PHI y del Gobierno de Flandes, Departamento de Ciencias e Innovaciones

PROYECTO ELABORACIÓN DEL MAPA DE ZONAS ÁRIDAS, SEMIÁRIDAS Y SUBHÚMEDAS DE AMÉRICA LATINA Y EL CARIBE

Coordinadores del Proyecto

Koen Verbist, Coordinador Científico, Universidad de Gante, Bélgica
Fernando Santibáñez, Coordinador Científico, Universidad de Chile, Chile
Guido Soto, Director Ejecutivo, CAZALAC, Chile
María Concepción Donoso, Hidróloga Regional PHI-UNESCO ALC, Montevideo, Uruguay
Donald Gabriels, Contraparte Científica Gobierno de Flandes, Bélgica

Coordinadores Subregionales

Mesoamérica: Javier Aparicio y Israel Velasco - IMTA, Mexico

Países Andinos: Deyanira Lobo - Universidad Central de Venezuela

Cono Sur: Roberto Pizarro - Universidad de Talca, Chile

Caribe: Zelmira May - UNESCO ALC, Montevideo

Mayor Información: www.cazalac.org o cazalac@cazalac.org

Versión digital del Atlas: http://www.cazalac.org/mapa_za.php

Publicado en el 2010 por el Programa Hidrológico Internacional (PHI) de la Oficina Regional de Ciencia para América Latina y el Caribe de la Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO) y el Centro del Agua para Zonas Áridas de América Latina y el Caribe (CAZALAC).

Dr. Luis P. Piera 1992, 2º piso, 11200 Montevideo, Uruguay Atlas de Zonas Áridas de América Latina y el Caribe Documento Técnico del PHI-LAC, Nº25 ISBN: 978-92-9089-164-2

© UNESCO 2010

Las denominaciones que se emplean en esta publicación y la presentación de los datos que en ella figura no suponen por parte de la UNESCO la adopción de postura alguna en lo que se refiere al estatuto jurídico de los países, territorios, ciudades o zonas, o de sus autoridades, no en cuanto a sus fronteras o límites. Las ideas y opiniones expresadas en esta publicación son las de los autores y no representan, necesariamente, el punto de vista de la UNESCO.

Se autoriza la reproducción, a condición de que la fuente se mencione en forma apropiada, y se envíe copia a la dirección abajo citada. Este documento debe citarse como:

UNESCO, 2010. "Atlas de Zonas Áridas de América Latina y el Caribe". Dentro del marco del proyecto "Elaboración del Mapa de Zonas Áridas, Semiáridas y Subhúmedas de América Latina y el Caribe". CAZALAC. Documentos Técnicos del PHI-LAC, N°25.

Dentro del límite de la disponibilidad, copias gratuitas de esta publicación pueden ser solicitadas a:

Programa Hidrológico Internacional para América Latina y el Caribe (PHI-LAC) Oficina Regional de Ciencia para América Latina y el Caribe UNESCO Dr. Luis P. Piera 1992, 2º piso 11200 Montevideo, Uruguay

Tel.: + 598 2 413 2075 Fax: + 598 2 413 2094 E-mail: phi@unesco.org.uy http://www.unesco.org.uy/phi Centro del Agua para Zonas Áridas y Semiáridas de América Latina y el Caribe (CAZALAC) Benavente 980 La Serena, Chile

Tel./Fax: +56 51 204 493 E-mail: cazalac@cazalac.org http://www.cazalac.org

CAZALAC agradece el apoyo de los siguientes organismos que contribuyeron en el financiamiento de la impresión de este documento:

CON EL APOYO DEL GOBIERNO FLAMENCO

Ministerio de Economía, Ciencia e Innovación del Gobierno de Flandes, Bélgica

Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura – UNESCO

Convención de las Naciones Unidas de Lucha contra la Desertificación y Sequía – UNCCD.

Coordinadores Nacionales

Subregión Mesoamérica

Israel Velasco - IMTA, México

Ivan Jaramillo - ETESA, Panamá

Luis Palacios - INETER, Nicaragua

Dania Baca - Serna, Honduras

Pedro Tax - INSIVUMEH, Guatemala

Deisy Lopez - SNET, El Salvador

Rafael Chacón - ICE, Costa Rica

Ramon Frutos - National Hydromet Service - Belice

Subregión el Caribe

Iván Rodríguez - Antigua Public Utilities Authority, Antigua

Brian Beneby - Water Quality Unit, Water and Sewerage Corporation, Bahamas

Carlyle Bourne - Ministry of Agriculture, Rural Development, Barbados

Shonel Dwyer - Water Resource Authority, Jamaica.

Jamar Regis - Water Resources Unit, Ministry of Agriculture Forestry & Fisheries, Saint Lucia

Brian Beckles - Water Resources Agency (WASA), Water and Sewerage Authority of Trinidad and Tobago

Hector Rodríguez - INDRHI, Republica Dominicana

Argelio Fernandez - CENHICA, Cuba

Subregión Países Andinos

Marelia Puche - Universidad Central de Venezuela

Yesid Carvajal - Universidad del Valle, Colombia

Carlos Lugo - INAMHI, Ecuador

Héctor Vera - Dirección de Hidrología y Rec. Hídricos del SENAMHI, Perú

Angel Aliaga - Instituto de Hidráulica e Hidrología, Bolivia

Subregión Cono Sur

Fernando Santibáñez - Universidad de Chile, Chile

María Cristina Moyano - INA, Argentina

Raúl Alberto Díaz – INTA, Argentina

Lilian Portillo - Secretaria del Ambiente, Paraguay

Alexandre Ortega - Embrapa, Brasil

Alfredo Altamirano - RENARE, Uruguay

Contenido

Introducción	1
Descripción Metodológica	2
Introducción	2
Cálculo de la Evapotranspiración de de Referencia	2
Indicadores de Aridez	2
Indicadores de la Variabilidad e Intensidad de Regímenes de Aridez	4
Zonación de Regímenes de Aridez	5
Resultados	7
Comparación de Métodos de Cálculo de Evapotranspiración de Referencia	7
Comparación de Índices de Aridez	8
Resumen de la Zonación de Regímenes de Aridez en América Latina y el Caribe	11
Porcentaje de zonas áridas en cada país	19
América Latina	19
El Caribe	19
Mapa de Aridez de América Latina y El Caribe	20
Mapas de Aridez por país	
Antigua y Barbuda	21
Argentina	22
Bahamas	23
Barbados	
Belice	
Bolivia	
Brazil	
Chile	
Colombia	
Costa Rica	
Cuba	
República Dominicana	
Ecuador	
El Salvador	
Guatemala	
Haití	
Honduras	
Jamaica	
México	
Nicaragua	
Panama	
Paraguay	
Perú	
Santa Lucía	
Trinidad	
Uruguay	
Venezuela	
Referencias	

Introducción

El Atlas de Zonas Aridas de América Latina y el Caribe (ALC) presenta los resultados finales de esta iniciativa de cobertura regional, en la que más de 26 países de la Región cooperaron en la creación del mapa de zonas áridas, semiáridas y subhúmedas de ALC. Hasta el presente, la Región no contaba con un indicador común para caracterizar la disponibilidad de recursos hídricos en todos los países, dificultando el tener una visión más precisa de las ofertas efectivas y demandas hídricas que existen, desde el punto de vista climático, en cada área. Esto es especialmente relevante en aquellos países donde existen importantes gradientes de aridez y en zonas con excedentes hídricos.

Por otro lado, es importante señalar que los procesos de desertificación, así como también de las sequías periódicas de la que son objeto, están presentes en la mayor parte de los territorios con escasez hídrica. Los procesos anteriores contribuyen a agravar aún más los impactos negativos de la escasez de agua, lo que dificulta el desarrollo sostenible y la conservación de los ecosistemas asociados a estos ambientes. El hecho de contar con mayor información, en este sentido, permitirá desarrollar un mejor análisis de cada situación en particular y tomar decisiones apropiadas en cada caso, desde el punto de vista de las inversiones y proyectos de desarrollo, así como el mejoramiento de las normas de fomento y legislativas, entre otros aspectos.

En consideración a lo anterior, el Programa Hidrológico Internacional (PHI) de la UNESCO, con el apoyo del Gobierno de Flandes, acordó llevar adelante este proyecto con el Centro del Agua para Zonas Aridas y Semiáridas de América Latina y el Caribe - CAZALAC, que fue incluido en su Plan de Operaciones, contando con el apoyo de los Comités Nacionales y Puntos Focales del PHI de la Región de América Latina y el Caribe.

En una primera etapa del proyecto, se coordinó la compilación de una extensa base de datos de información climática por parte de los países de la Región, con el objetivo de homogenizar las bases de datos necesaria para la creación de los mapas. A través de talleres subregionales guiados por sus 4 subcoordinadores, los participantes nacionales fueron entrenados en la metodología y uso del software creado de manera específica para este proyecto.

En una etapa posterior, los mapas nacionales creados fueron evaluados por representantes de los países, en muchos casos, con una amplia participación de institutos y representantes nacionales, llegando a mapas de consenso por parte de los países de la Región. Por lo tanto, podemos presentar en este Atlas el primer Mapa de Aridez que cubre el área completa de América Latina y el Caribe basado en la utilización de criterios uniformes de evaluación.

Finalmente, aprovechamos la oportunidad para expresar nuestra sincera gratitud a todos quienes participaron en todas y cada una de las etapas del proyecto, por haber apoyado esta importante iniciativa, que ya ha sido y, sin duda, continuará siendo un punto de partida para nuevos proyectos de alcance regional.

Descripción Metodológica

Introducción

Dentro del marco del proyecto, se elaboró una metodología unificada aplicable a todas las subregiones de América Latina y el Caribe. Dos tipos de análisis fueron incorporados: un análisis de datos climatológicos, usando datos promedios de periodos normales (de 30 años) y un análisis de variaciones temporales, usando series históricas de precipitaciones.

El proceso de trabajo se descompuso en la colección de datos climatológicos y series de precipitaciones y su transformación a un formato compatible con el software "Sistema de Cálculo de Índices del Régimen Hídrico" - CIRH (Agrimed, Universidad de Chile), desarrollado específicamente para este proyecto, el cual calcula de manera automática una diversidad de indicadores de régimen de aridez, incluyendo, entre otros la Evapotranspiración, el Déficit y el Excedente Hídrico (DH y EH), el Índice de Concentración de Precipitación (ICP) y el Índice de Fournier Modificado (IFM).

La metodología aplicada se describe con más detalle en Lobo et al. (2005), disponible en el sitio web de CAZALAC, junto con el software CIRH, en la dirección http://www.cazalac.org/mapa_alc_guia.php.

Cálculo de la Evapotranspiración de Referencia

La evapotranspiración fue calculada mediante la fórmula de Penman-Montheith (Eq.1), la que requiere datos de temperatura, humedad relativa, radiación solar y velocidad de viento.

$$ET_{o} = \frac{0.408\Delta(R_{n} - G) + \gamma \frac{900}{T + 273} u_{2}(e_{s} - e_{a})}{\Delta + \gamma(1 + 0.34u_{2})}$$

Eq. 1

donde ET_0 evapotranspiración de referencia [mm día-1], R_n radiación neta en la superficie del cultivo [MJ m-2 día-1], G densidad de flujo de calor en el suelo [MJ m-2 día-1], T temperatura del aire media diaria a 2 m altura [°C], u_2 velocidad del viento a 2 m altura [m s-1], e_s presión de vapor de saturación [kPa], e_a presión de vapor actual [kPa], e_s - e_a déficit de presión de vapor de saturación [kPa], Δ pendiente de la curva de presión de vapor de saturación en función de la temperatura [kPa °C-1], coeficiente psicrométrico [kPa °C-1].

Para asegurar la estimación correcta de la evapotranspiración promedio mensual, se utilizan datos climáticos para un periodo de 30 años (1970-2000). Sin embargo, el software desarrollado permite usar estaciones con datos faltantes, usando otras fórmulas como las de Ivanov, Turc o Thornthwaite. En todos los casos, CIRH permite calibrar estas fórmulas con referencia a la ecuación de Penman-Monteith.

Indicadores de Aridez

Se aplicó CIRH a todas las estaciones meteorológicas en la Región de modo de contar con una evaluación unificada de los índices. Los indicadores calculados fueron:

a)Índice de Aridez (IA), basado en PNUD (1997) y que se determina según:

$$I_a = \frac{p_a}{ET_0}$$

Eq. 2

donde P_a es la precipitación anual y ET₀ la evapotranspiración de referencia anual. La relación entre precipitación y evapotranspiración define 6 clases de aridez:

Definición	Ratio P _a /ET _o
Hiperárida	<0.05
Árida	0.05 to 0.20
Semiárida	0.20 to 0.5
Subhúmeda seca	0.5 to 0.65
Subhúmeda húmeda	0.65 to 1.0
Húmeda	

Considerando que la aridez tiene múltiples facetas, el simple cuociente P/ET no representa adecuadamente el tipo y la intensidad de la aridez de un lugar. Por ello se incluyó complementariamente una evaluación del déficit (DH) y el excedente hídrico (EH).

$$DH = \sum_{i=1}^{12} (ET_0 - P)$$
 Eq. 3

$$EH = \sum_{1}^{12} (P - ET_0)$$

donde $\mathsf{ET}_{\scriptscriptstyle{0}}$ es la evapotranspiración de referencia mensual (mm) y P es la precipitación mensual (mm).

Un aspecto de mayor relevancia aún, tanto para la agricultura como para la conservación de un ecosistema, es la estacionalidad de la temporada seca. Por esta razón, se incluyó un análisis de los periodos secos y húmedos dentro del año. Para esto se propuso como un mes seco si

$$\frac{P_a}{ET_0} < 0.5$$

a nivel mensual. La longitud del periodo seco corresponde al número de meses en el año que cumplen esta condición.

b) Régimen de Aridez (RA) o Régimen Hídrico, el que se establece según la escala siguiente:

Régimen de Aridez	Condiciones
Xérico	12 meses secos e I _a < 0.05
Hiper Árido	11 – 12 meses secos
Árido	9 – 10 meses secos
Semiárido	7 – 8 meses secos
Subhúmedo	5 – 6 meses secos
Húmedo	3 – 4 meses secos
Hiper Húmedo	1 – 3 meses secos
Hídrico	0 meses secos y P _a < 2500 mm
Hiper Hídrico	0 meses secos y P _a > 2500 mm

Uno de los factores que dificultan la aplicación de estos indicadores, es la escasa disponibilidad de datos en zonas áridas, además de una falta de observaciones de campo para validar los cálculos de la evapotranspiración de referencia. También cabe destacar que los límites entre zonas agroclimatológicas son graduales, convirtiendo la delineación de las zonas en un proceso más bien convencional.

Indicadores de la Variabilidad e Intensidad de Regímenes de Aridez

1. Índice de Fournier Modificado (IFM)

En zonas áridas, la precipitación se caracteriza por la ocurrencia de lluvias cortas con alta intensidad. Después de una temporada seca, la precipitación ejerce una fuerza importante sobre el suelo, causando procesos erosivos, debido a la baja cobertura de la vegetación y a la sequedad del suelo. La intensidad de las pérdidas erosivas depende de la energía de la precipitación y la duración de la temporada seca. Para cuantificar indirectamente esta relación, Fournier (1960) propuso un índice basado en una distribución anual y mensual de la precipitación, que fue adaptado por Arnoldus (1980).

$$| IFM = \sum_{i=1}^{12} \frac{p_i^2}{Pa} |$$

Eq. 6

donde p, es la precipitación mensual (mm) y P_a es la precipitación anual (mm).

Este índice está asociado con la capacidad de la precipitación de provocar erosión hídrica. Por lo tanto, se llama también Índice de Agresividad Climática.

IFM	Agresividad Climática
0 – 60	Muy baja
60 - 90	Baja
90 – 120	Moderada
120-160	Alta
> 160	Muy alta

2. Índice de la Concentración de Precipitación (ICP)

Este índice permite evaluar la distribución de la lluvia a lo largo del año y define la estacionalidad de las lluvias. Bajo condiciones de precipitaciones concentradas se complica el manejo de agua, el control de riego, la prevención de erosión hídrica y el desarrollo de la agricultura de secano. Para el cálculo de este índice se procede la siguiente fórmula:

$$PCI = 100 \frac{\sum p_i^2}{Pa^2}$$

Eq. 7

donde p, es la precipitación mensual (mm) y P es la precipitación anual (mm).

PCI	Concentración de Precipitación
8.3 – 10	Uniforme
10 – 15	Moderadamente estacional
15 – 20	Estacional
20 – 50	Altamente estacional
50 – 100	Irregular

Zonación de Regímenes de Aridez

Para la formación de las zonas de los distintos regímenes de aridez, se calculó, en un primer paso, la evapotranspiración de referencia para todas las estaciones climatológicas con disponibilidad de datos. En aquellas que disponían de temperatura, humedad, radiación y viento, se aplicó directamente el método de Penman-Monteith. En estas estaciones se aplicaron, además, otras fórmulas simples para la estimación de la evapotranspiración, como la de Thornthwaite, Ivanov o Turc, las cuales se pueden calibrar a través de regresiones, teniendo como referencia el método de Penman-Monteith, como será indicado más adelante.

Finalmente, se aplicó CIRH sobre datos climatológicos de <u>5946 estaciones</u> ubicadas en la Región de América Latina y El Caribe (Fig. 1), para obtener los resultados de la evapotranspiración de referencia y los indicadores de aridez, con los que se creó una base de datos en ArcGIS (ESRI, California, EE.UU.) de modo de hacer una interpolación preliminar. El mapa resultante fue sometido a una depuración manual, lo que permitió corregir las inconsistencias cartográficas generadas por la interpolación automatizada. Solamente así se pudo incorporar los efectos de "sombra de lluvia", que se produce a sotavento en las zonas de montaña, por efecto del descenso de las masas de aire en estos sectores. El trazado de isolíneas se realizó sobre mapas de relieve de modo facilitar la incorporación de las variaciones espaciales que éstas sufren por acción del relieve.

Para cada uno de los países de la Región, se envió copia de los mapas a los coordinadores nacionales para su evaluación interna con la solicitud de proponer cambios si se disponía de información adicional no considerada en la elaboración del mapa. Cada cambio propuesto fue adaptado en el mapa preliminar para obtener una versión mejorada.

Finalmente, se realizó una serie de talleres nacionales en los países participantes del proyecto, donde se consideró necesario presentar el mapa nacional y contrastarlo con información local adicional que podría mejorar los mapas de zonas áridas, subhúmedas y húmedas. A través de un proceso interactivo con todos los participantes, en cada uno de los talleres, se obtuvo un mapa final de consenso, el que fue retenido como versión final.

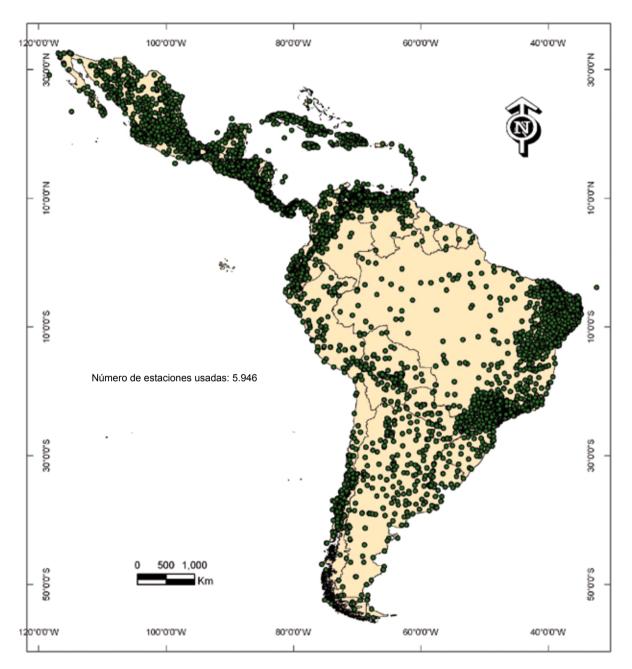


Fig. 1 Estaciones meteorológicas usadas en la elaboración del Mapa de Aridez de América Latina y el Caribe

Resultados

Comparación de Métodos de Cálculo de Evapotranspiración de Referencia

Los indicadores de aridez utilizan valores mensuales o anuales para calcular el déficit pluviométrico anual o mensual. Asimismo, resulta muy importante la elección de la fórmula de evapotranspiración. La elaboración de los mapas nacionales se basó en la utilización de la fórmula de Penman-Monteith (Eg.1), y sus resultados fueron comparados, además, con otras alternativas de cálculo, para 799 estaciones en la Región de América Latina y el Caribe, tal como se presenta en Fig.2. Se muestra claramente una desviación entre la fórmula de Penman-Monteith y las fórmulas de Ivanov (c) y Thornthwaite (d), con diferencias en promedio de 3.3 y 5.3 mm mes⁻¹ respectivamente y un error cuadrático medio que indica una desviación de la línea de perfecta coincidencia. Las estimaciones de ET_o con las formulas de Monteith Original (a) y Turc (b) son más cercanas a la fórmula de Penman-Monteith. con correlaciones altas (0.98 y 0.87) y desviaciones en promedio cercanas a 2 mm mes-1, las que muestran un sesgo muy reducido. La ecuación de Turc también ha sido encontrada como la mejor alternativa para evaluar ET por varios investigadores, en casos en que la disponibilidad de datos es limitante (Jensen et al., 1990; Lu et al., 2005; Martinez and Thepadia, 2010). Como consecuencia, se optó en el proyecto por el uso de Penman-Monteith como el modelo más adecuado para el cálculo de la evapotranspiración de referencia en todas las estaciones, y se aceptó el uso de la ecuación de Turc donde la información climática era incompleta.

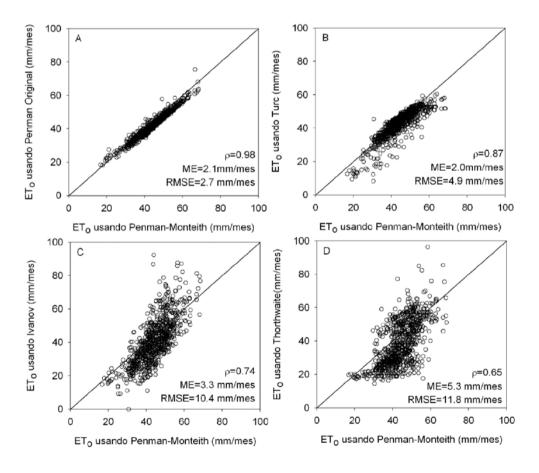
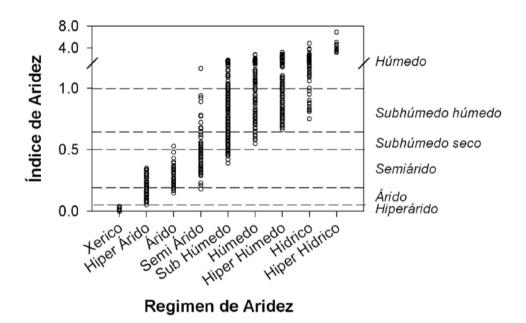



Fig. 2 Comparación entre la evapotranspiración de referencia usando Penman-Monteith (Eq.1), y las ecuaciones simplificadas: Turc, Ivanov y Thorn-thwaite, con sus respectivas coeficientes de correlación de Pearson (ρ), error medio (ME) y error cuadrático medio (RMSE), para las 799 estaciones en la base de datos de FAO (1984).

Comparación de Índices de Aridez

Como se mencionó en la metodología, existen varios métodos para delimitar las zonas áridas. En este proyecto se consideraron dos índices: el Índice de Aridez de UNEP (1997) y el Régimen de Aridez calculado sobre la base de la extensión del periodo seco. El primer indicador incluye sólo valores anuales de precipitación y evapotranspiración, sin incorporar el efecto de la estacionalidad, enmascarando las sequías estacionales. El segundo considera la repartición de la evapotranspiración y la precipitación a nivel mensual, por lo que da resultados más representativos de la condiciones del déficit hídrico local.

La Fig. 3 muestra una comparación de los dos índices para 799 estaciones distribuidas en la región de América Latina y el Caribe (FAO, 1984).

Fig. 3 Comparación de dos indicadores de aridez (n = 799)

En climas muy áridos y muy húmedos se produce coincidencia entre ambos indicadores, mientras que en los regímenes transicionales se observa una importante discrepancia. Un ejemplo de este comportamiento se observa en la estación "El Milagro" en Ecuador. A modo de ejemplo, se muestran los datos respectivos (Fig. 4 y Fig. 5).

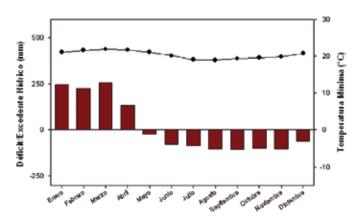


Fig. 4 Déficit (-) o excedente (+) hídrico promedio y la temperatura mínima de la estación meteorológica "El Milagro" (Ecuador)

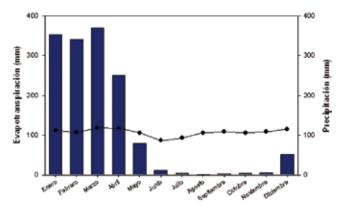


Fig. 5 Evapotranspiración y precipitación promedio en "El Milagro" (Ecuador)

Los gráficos muestran una gran estacionalidad de las lluvias, causada por una temporada húmeda corta y un periodo seco más largo. Esta situación es especialmente importante debido a la alta temperatura, con un mínimo de 20 °C durante todo el año, asociada a una alta evapotranspiración.

El Índice de Aridez compara solamente el valor anual de la evapotranspiración con la precipitación total, clasificando este punto como Húmedo. Al contrario, el Régimen de Aridez depende de los meses con déficit hídrico, clasificando la misma estación como Semiárido, atendiendo a que se observa una estación seca de 8 meses. Una situación similar fue encontrada en la estación Barras, en Brasil, donde el Índice de Aridez indica una condición Subhúmeda Seca, mientras que el Régimen de Aridez la clasifica como Árida. Para este caso, también se encuentra una situación en la cual la alta temperatura se asocia a una alta evapotranspiración, junto con una fuerte estacionalidad de la precipitación, resultando en un periodo seco importante. En otras 11 estaciones con alta estacionalidad de las precipitaciones, se produjo una inconsistencia entre la clasificación de una zona como Semiárida según el Régimen de Aridez y Subhúmeda Húmeda según el índice de Aridez.

Estos casos muestran que el régimen de aridez basado en la longitud de la estación seca es un mejor indicador para delinear zonas agroclimatológicas, al tomar en cuenta la distribución del déficit hídrico a lo largo del año. Por otro lado, ambos índices muestran una gran variabilidad en las condiciones intermedias, indicando una debilidad en su clasificación. Por lo tanto, es importante el incorporar una mayor cantidad de datos en el análisis de las zonas, como la temperatura mínima, la altura, y la estacionalidad de la aridez a lo largo del año.

En Fig. 4 se presenta una comparación espacial de los dos sistemas de evaluación de la aridez. Para efectos de comparación se agrupan las clases en dos grandes grupos, delimitado por el valor crítico de cada índice que separa los límites de climas áridos de los húmedos:

Clase según el Régimen de Aridez	Grupo	Clase según el Índice de Aridez
Xerico Hiper Árido Árido Semiárido Subhúmedo	Árido	Hiperárido Árido Semiárido Subhúmedo Seco
RH = 4 meses secos		I _a = 0.65
Húmedo Hiper Húmedo Hídrico Hiper Hídrico	Húmedo	Subhúmedo Húmedo Húmedo

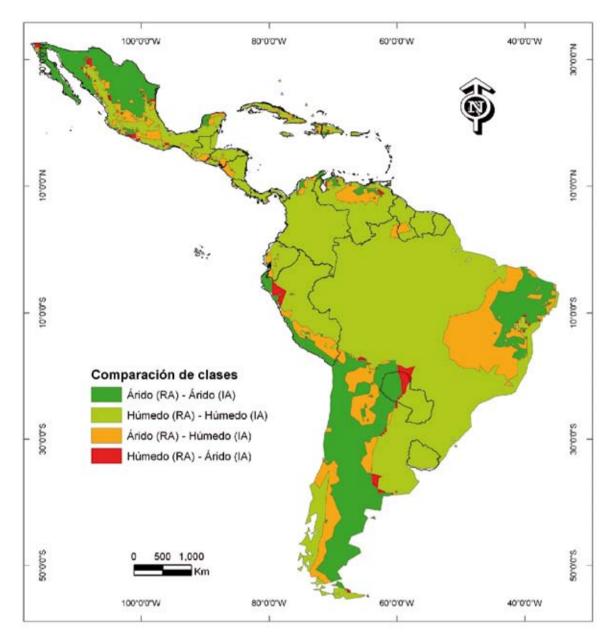
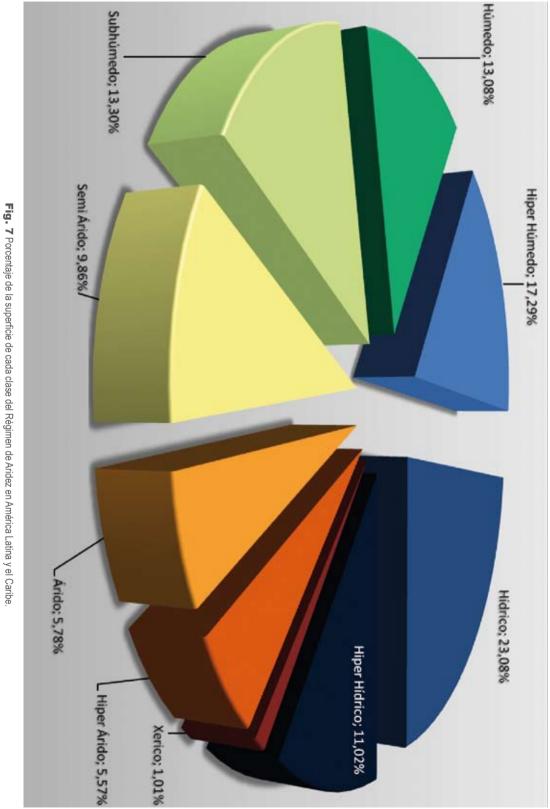



Fig. 6 Clasificación de las diferencias y coincidencias observadas entre el grupo climático según el índice de Aridez (IA -Eq.2) y el régimen de aridez (RA - Eq.5) basado en la longitud de la estación seca.

Se puede observar que en gran parte de la Región existe una coincidencia en la distribución del grupo de climas áridos según el Índice de Aridez y el Régimen de Aridez definido según la longitud de la estación seca. Lo mismo se observa en el caso del grupo de climas húmedos. Sin embargo, grandes superficies están clasificadas como Húmedos según el Indice de Aridez y como Áridos según el Régimen de Aridez, como es el caso en la zona central de México, el norte de Venezuela, la zona de Brasilia, en Brasil, y la zona central de Chile. Todas éstas están ubicadas en zonas transicionales, donde la aridez evoluciona hacia climas más húmedos. Por lo tanto, esta comparación espacial muestra que el uso del Régimen de Aridez como divisor de zonas áridas es más realista que el Índice de Aridez de PNUD.

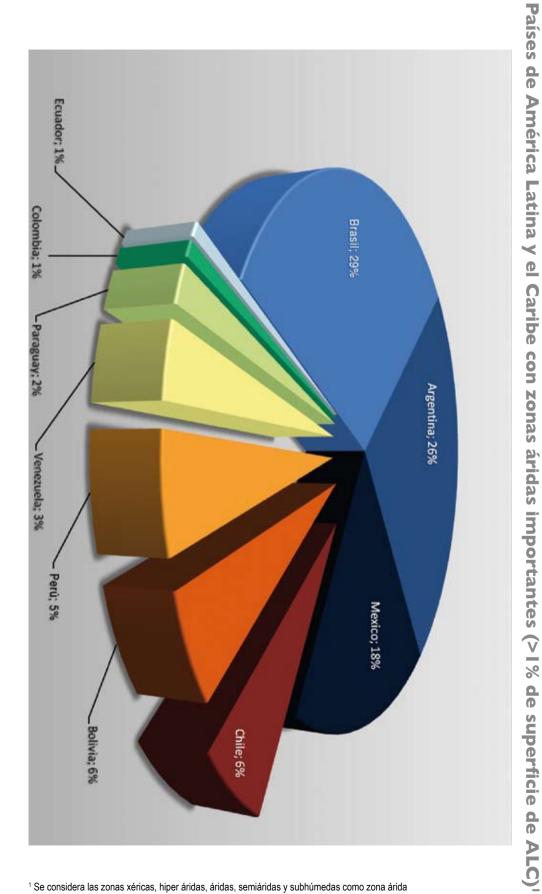
	dOI	0 – 100	9 – 30	9 - 50	9 – 50	9 – 20	9 – 15	9 – 13	9 – 13	9 – 10
ibe	W±I	0 – 30	10 – 80	20 – 540	20 – 790	30 – 450	45 – 490	75 – 600	55 – 420	320 – 700
atina y el Cari	Excedente Hídrico	0	0	0 – 290	0 – 920	0 – 1790	0 – 3260	0 – 3400	20 – 2400	2620 – 5630
n América La	Déficit Hídrico	-11001960	-700 – -1800	-770 – -1700	-450 – -1600	-300 – -1220	-250 – -780	-100 – -630	0 – -420	0 20
de Aridez er	Precipitación anual	0 – 80	80 – 660	190 – 960	220 – 1640	380 – 2830	520 – 4310	820 – 4570	640 – 3830	3800 – 7220
Regimenes	Número de meses secos	12	11 – 12	9 – 10	7 – 8	5 - 6	3 – 4	1–3	0	0
Zonación de	Índice de Aridez (PNUD)	0 - 0.04	0.05 - 0.35	0.15 – 0.73	0.18 – 1.16	0.39 – 1.74	0.55 – 2.78	0.66 – 3.15	0.75 – 4.81	3.14 – 6.86
Resumen de la Zonación de Regimenes de Aridez en América Latina y el Caribe	Régimen de Aridez	Xérico	Hiper Árido	Árido	Semiárido	Subhúmedo	Húmedo	Hiper Húmedo	Hídrico	Hiper Hídrico

	Chile	18%	%8	13%	13%	%8	%6	%8	%6	15%
	Islas Virgenes				30%	20%	792	25%		
	Brasil			%0	8%	17%	13%	16%	36%	10%
S	Bolivia	%0	1%	17%	13%	%8	34%	18%	%8	1%
or paí	Belice						3%	%09	46%	
Aridez p	Barbados					100%				
men de	Bahamas				14%	10%	47%	78%		
el Régi	Aruba			100%						
la clase d	Argentina	1%	21%	17%	18%	10%	%2	10%	13%	%0
Porcentaje de la superficie de cada clase del Régimen de Aridez por país	Antigua y Barbuda				11%	%99	19%	4%		
e la su	Aguilla				100%					
Porcentaje d	Régimen de Aridez Aguilla	Xérico	Hiper Árido	Árido	Semiárido	Subhúmedo	Húmedo	Hiper Húmedo	Hídrico	Hiper Hídrico

Régimen de Aridez	Colombia	Costa Rica	Cuba	Dominica	República Dominicana	Ecuador	El Salvador	Guyana Francesa	Grenada	Guadalupe	Guatemala
Xérico										%0	%0
Hiper Árido	%0				%0	%0				%0	%0
Árido	1%		%0		3%	2%				%0	%0
Semiárido	1%		1%		17%	%2	1%			4%	2%
Subhúmedo	3%	14%	20%		14%	13%	33%			21%	23%
Húmedo	3%	12%	43%		%6	14%	%29			13%	10%
Hiper Húmedo	31%	23%	24%	100%	18%	11%		100%		%19	27%
Hídrico	24%	10%	10%		16%	10%		%0	100%	%0	27%
Hiper Hídrico	36%	41%			23%	42%				%0	11%

Hiper Hídrico	Hídrico	Hiper Húmedo	Húmedo	Subhúmedo	Semiárido	Árido	Hiper Árido	Xérico	Régimen de Aridez	Hiper Hídrico	Hídrico	Hiper Húmedo	Húmedo	Subhúmedo	Semiárido	Árido	Hiper Árido	Xérico	Régimen de Aridez
	14%	86%							Puerto Rico	37%	20%	11%	19%	13%					Guyana
		40%	30%	30%					Saint Kitts and Nevis		1%	29%	16%	48%	5%	0%			Haití
92	7								San Vice Gran	2%	20%	42%	15%	22%					Honduras
93%	7%								San Vicente y las Granadinas	13%	49%	23%	6%	3%	7%				Jamaica
38%	33%	24%	4%						Santa Lucía			100%							Martinica
	5%	93%	2%						Surinam	2%	5%	13%	15%	14%	19%	14%	18%		a México
		100%							Trinidad y Tobago			6	6	6	6 5%	6 95%	6		Antillas co Honaldesas
					95%	5%			Islas Turcas y Caicos	13%	15%	40%	5%	26%					Nicaragua
	100%								Uruguay	14%	6%	66%	8%	6%					Panamá
13%	12%	24%	24%	22%	3%	1%	0%		Venezuela										
											40%	15%	11%	6%	12%	13%	3%	0%	Paraguay
		35%	65%						Islas Vírgenes	35%	9%	18%	8%	4%	11%	4%	8%	3%	Perú

Régimen de Aridez	Aguilla	Antigua y Barbuda	Argentina	Aruba	Bahamas	Barbados	Belice	Bolivia	Brasil	Islas Vírgenes	Chile
Xérico			3656498					26652			13138810
Hiper Árido			59750059					664163			5603167
Árido			48474324	11306				18107097	2316888		9347902
Semiárido	5913	5046	51205243		185676			13773360	64211062	3263	9479217
Subhúmedo		29175	28980499		134343	43606		8484039	147592019	2167	6030031
Húmedo		8304	20401761		619433		75833	37372490	114950301	2863	6435214
Hiper Húmedo		1617	28903260		387909		1108955	20071779	134529255	2702	6225434
Hídrico			36310617				1021777	8961664	306255769		6846804
Hiper Hídrico			328982					1437265	84823621		11535895

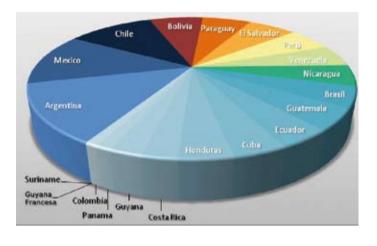

	Caribe
	Ū
	a A
-	Latina
	rd
0	
	me
	1
	EZ
	0
	Z
	de
	eP
1	D Y
	clase
	ada
	de c
	a
	perticle
	7

Régimen de Aridez	Colombia	Costa Rica	Cuba	Dominica	República Dominicana	Ecuador	El Salvador	Guyana Francesa	Grenada	Guadalupe	Guatemala
	364327				14053	40458					
	756254		9487		140257	410086					
	905350		145182		805072	1840527	12139			6894	187732
	3919494	742252	2213385		661088	3217749	676772			34768	2533931
	3796580	592428	4684011		424548	3533361	1373349			22341	1042343
۰	34917891	1198075	2633751	71528	866039	2794261		8338203		102172	2992305
	27893788	518191	1126793		773679	2554132		16766	34635		2996453
	41646721	2086883			1127292	10503448					1205566

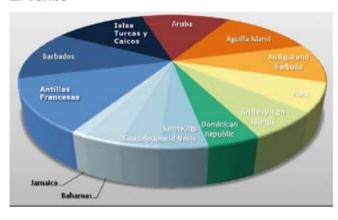
Hiper Hídrico	Hídrico	Hiper Húmedo	Húmedo	Subhúmedo	Semiárido	Árido	Hiper Árido	Xerico	Régimen de Aridez	Hiper Hídrico	Hídrico	Hiper Húmedo	Húmedo	Subhúmedo	Semiárido	Árido	Hiper Árido	Xérico	Régimen de Aridez
	124104	764445							Puerto Rico	7858128	4143213	2288435	4045544	2783483					Guyana
		9759	7218	7363					Saint Kitts and Nevis		27764	784742	439135	1294188	136102	12973			Haití
35578	2845								San Vicente y las Granadinas	235582	2193323	4712701	1631488	2427662					Honduras
78	55								nte y las dinas	140616	532738	247088	69057	33311	73733				Jamaica
23370	20622	14945	2668						Santa Lucía			207145							Martinica
	695382	13669908	308956						Surinam	3439035	10719454	24615836	28684100	27071767	37430127	28067266	35480266		México
		515379							Trinidad y Tobago						3211	67263			Antillas Holandesas
					34203	1755			Islas Turcas y Caicos	1690468	1927397	5149464	693362	3360427					as Nicaragua
	17703839								Uruguay	1038197	432483	4917013	597305	483741					a Panamá
11612506	11182482	21963903	22465175	20271131	2942196	1166328	395650		Venezuela		15855978	6111640	4548428	2504681	4708110	5064491	1070545	174643	Paraguay
		10264	18776						Islas Vírgenes	44997899	8 12147942	23376061	10633413	5666392	13949060	4577402	10657343	3719958	y Perú

País	% Zonas Áridas¹	% de la Superficie Total de Zonas Áridas en ALC	Superficie
			(km²)
Brasil	25%	29%	2141200
Argentina	69%	26%	1920666
México	65%	18%	1280494
Chile	58%	6%	435991
Bolivia	38%	6%	410553
Perú	30%	5%	385702
Venezuela	27%	3%	247753
Paraguay	34%	2%	135225
Colombia	5%	1%	59454
Ecuador	22%	1%	55088
Nicaragua	26%	0%	33604
Guyana	13%	0%	27835
Guatemala	25%	0%	27217
Honduras	22%	0%	24277
Cuba	22%	0%	23681
República Dominicana	34%	0%	16205
Haití	54%	0%	14433
Costa Rica	14%	0%	7423
El Salvador	33%	0%	6889
Panamá	6%	0%	4837
Bahamas	24%	0%	3200
Jamaica	10%	0%	1070
Antillas Holandesas	100%	0%	705
Barbados	100%	0%	425
Guadalupe	25%	0%	417
Islas Turcas y Caicos	100%	0%	360
Antigua y Barbuda	78%	0%	342
Aruba	100%	0%	113
Saint Kitts and Nevis	30%	0%	74
Aguilla Island	100%	0%	59
Islas Vírgenes	49%	0%	54
Belice	0%	0%	0
Dominica	0%	0%	0
Guyana Francesa	0%	0%	0
Grenada	0%	0%	0
Martinica	0%	0%	0
Puerto Rico	0%	0%	0
San Vicente y las Granadinas	0%	0%	0
Santa Lucía	0%	0%	0
Surinam	0%	0%	0
Trinidad y Tobago	0%	0%	0
Uruguay	0%	0%	0
Total		100.00%	7279053
	áridas, áridas, samiáridas y subbúmo	100.00%	1219000

 $^{^{\}rm 1}$ Se considera las zonas xéricas, hiperáridas, áridas, semiáridas y subhúmedas como zona árida

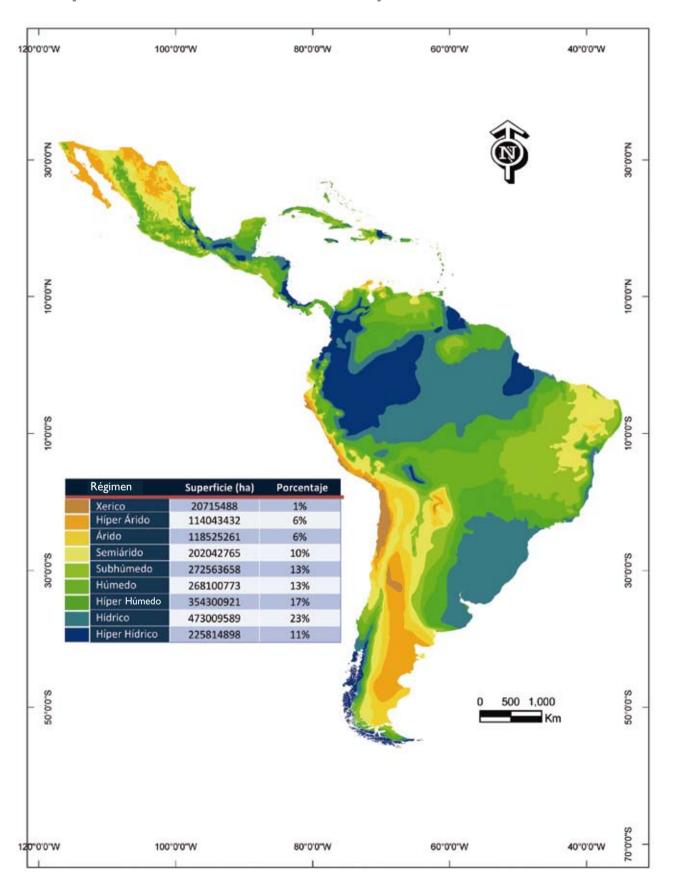


¹ Se considera las zonas xéricas, hiper áridas, áridas, semiáridas y subhúmedas como zona árida


Porcentaje de zonas áridas en cada país

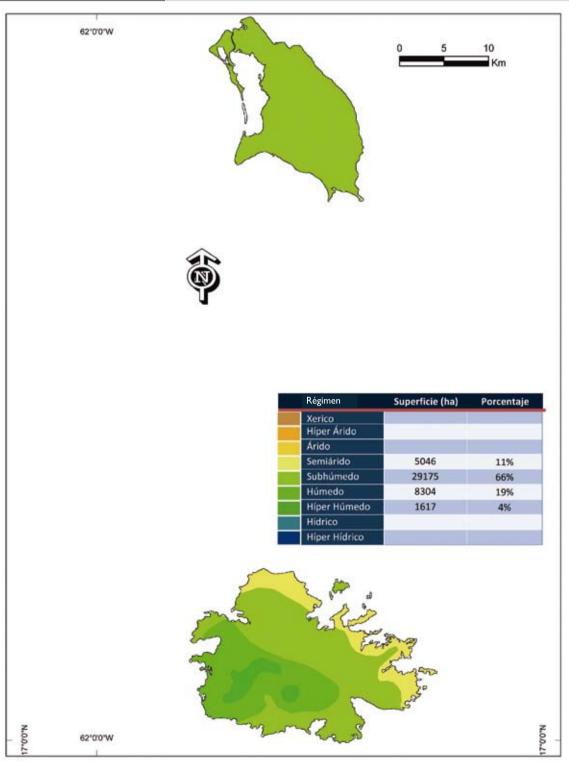
América Latina

País	% Zonas Áridas
Argentina	69%
México	65%
Chile	58%
Bolivia	38%
Paraguay	34%
El Salvador	100%
Perú	30%
Venezuela	27%
Nicaragua	26%
Brasil	25%
Guatemala	25%
Ecuador	22%
Cuba	22%
Honduras	22%
Costa Rica	14%
Guyana F.	13%
Panamá	6%
Colombia	5%
Guyana Francesa	0%
Surinam	0%
Uruguay	0%
Belice	0%


El Caribe

País	% Zonas Áridas
Antillas Holandesas	100%
Barbados	100%
Islas Turcas y Caicos	100%
Aruba	100%
Aguilla Island	100%
Antigua y Barbuda	78%
Haiti	54%
Islas Vírgenes	49%
República Dominicana	34%
Saint Kitts and Nevis	30%
Guadalupe	25%
Bahamas	24%
Jamaica	10%

 $^{^{\}rm 1}$ Se considera las zonas xéricas, hiperáridas, áridas, semiáridas y subhúmedas como zona árida


Mapa de Aridez de América Latina y el Caribe

Mapas de Aridez por País

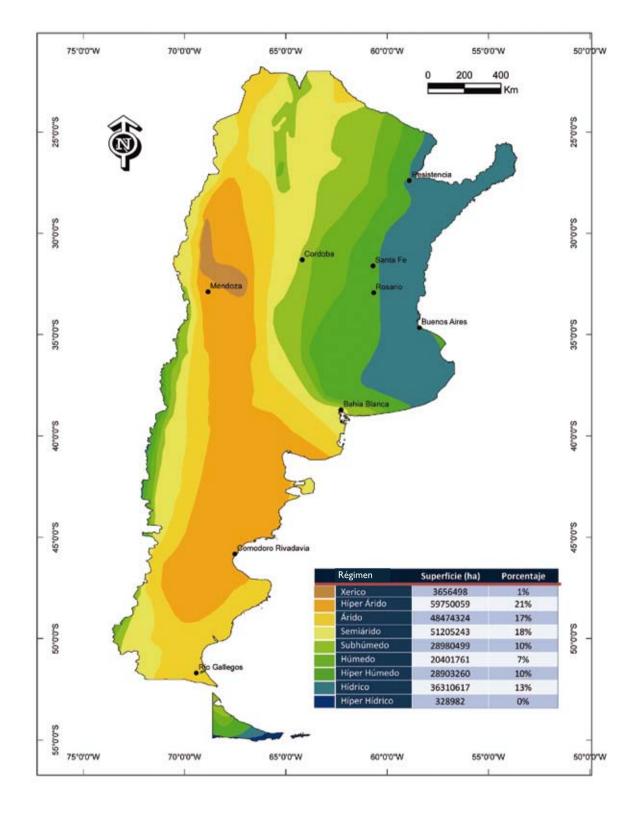
ANTIGUA Y BARBUDA

Fecha de creación	17 de octubre de 2007
Coordinadores CAZALAC	Koen Verbist, Fernando Santibañez
Coordinador Nacional	Ivan Rodrigues (APUA)

ARGENTINA

Fecha de creación

Coordinadores CAZALAC


Koen Verbist, Fernando Santibáñez

Coordinadores Nacionales

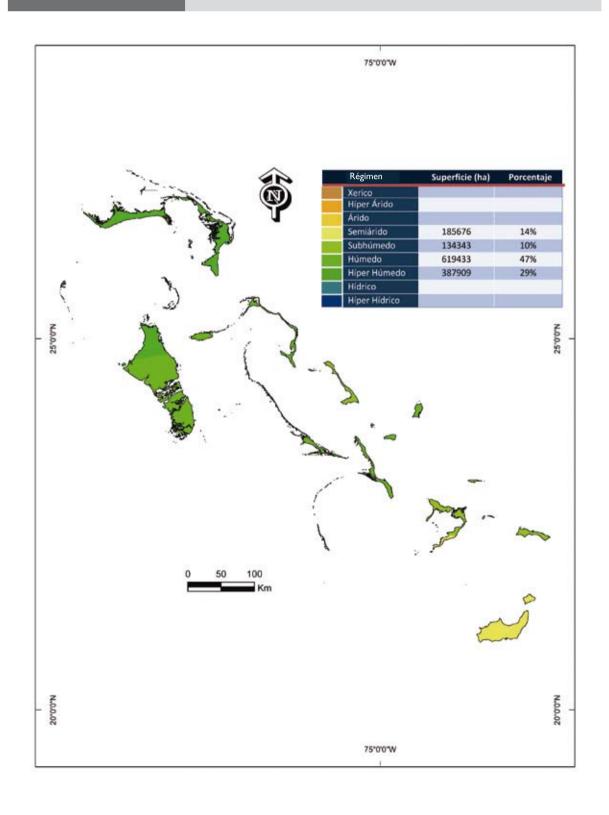
Cristina Moyano (INA), Raúl Díaz (INTA)

Participantes

Elena María Abraham (IADIZA), Mario Salomón (IADIZA)

BAHAMAS

Fecha de creación

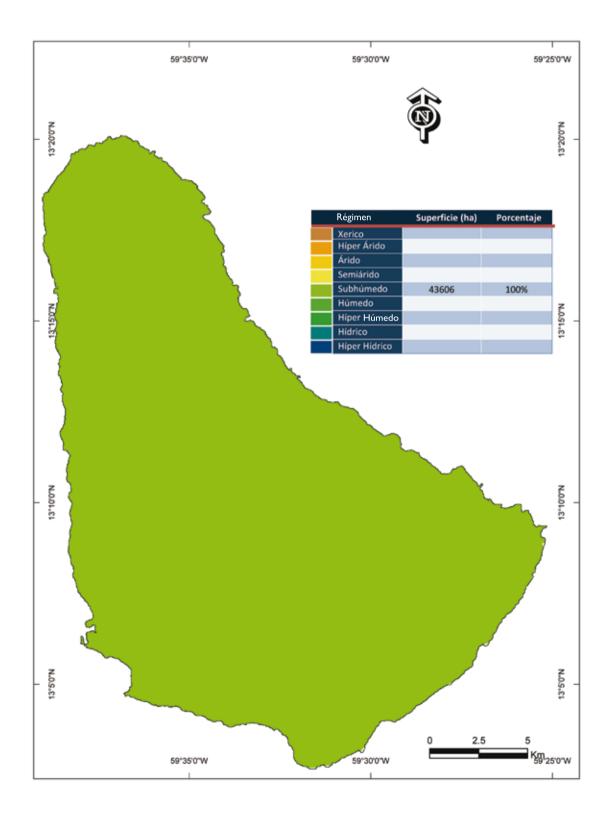

Coordinadores CAZALAC

17 de octubre de 2007

Koen Verbist, Fernando Santibáñez

Coordinadores Nacionales

John Bowleg (WSC), Michael Swann (WSC), Shantelle López (WSC), Jeffrey Simmons (Dep. of Meteorology)


BARBADOS

Fecha de creación

Coordinadores CAZALAC

Coordinadores Nacionales

Carlyle Bourne (Ministry of Agriculture, Rural Development)

BELICE

Fecha de creación

14 de abril de 2006

Coordinadores CAZALAC

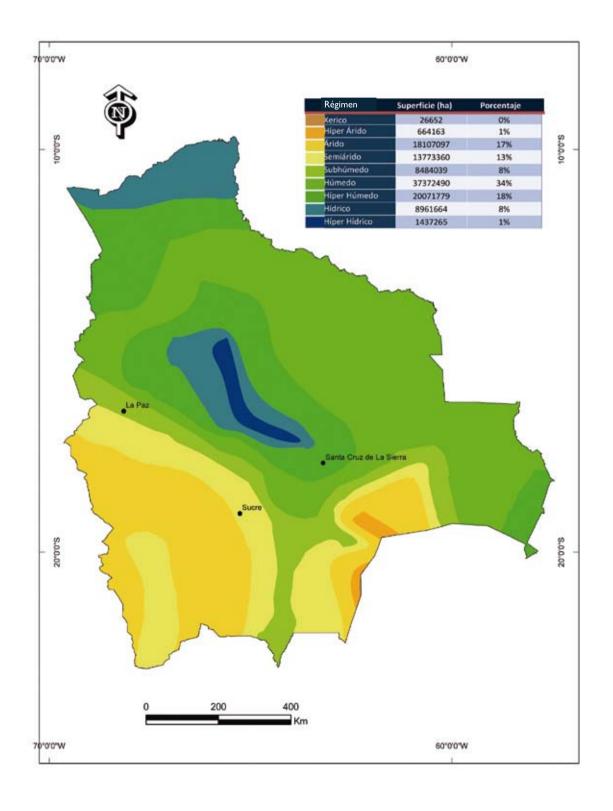
Fernando Santibáñez, Koen Verbist

Coordinadores Nacionales

Ramón Frutos (National Hydromet Service)

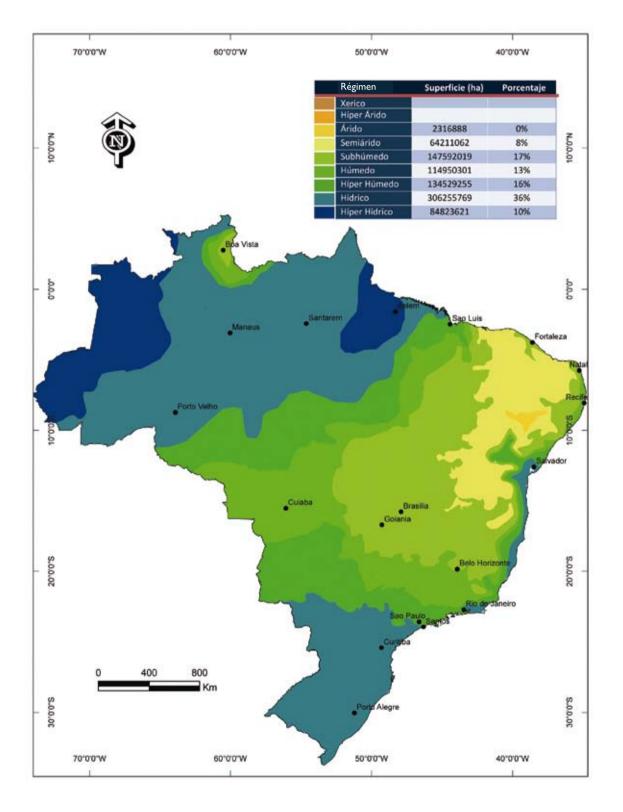
BOLIVIA

Fecha de creación


Coordinadores CAZALAC

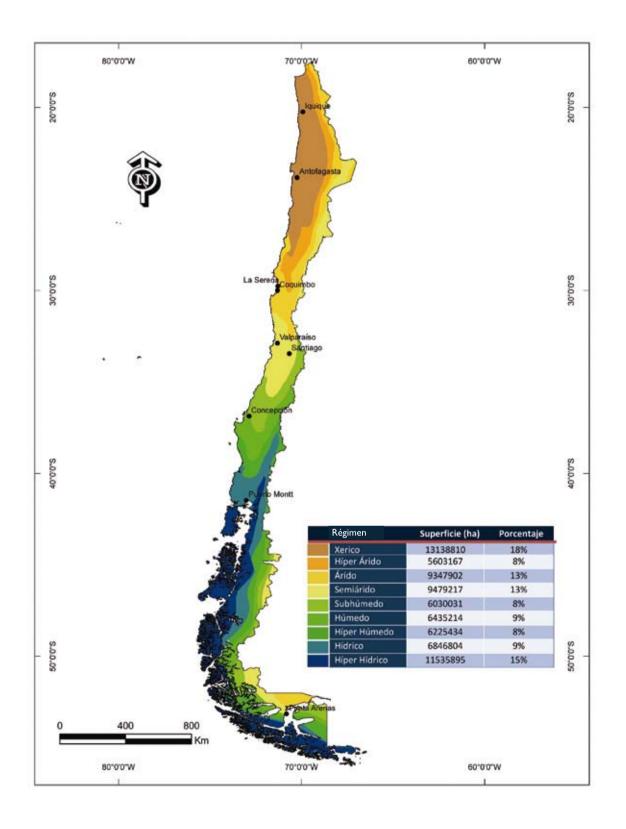
Coordinadores Nacionales

14 de abril de 2006


Fernando Santibáñez, Koen Verbist

Ángel Aliaga (Instituto de Hidráulica e Hidrología)

BRASIL


Fecha de creación
Coordinadores CAZALAC
Coordinadores Nacionales
Koen Verbist, Fernando Santibáñez
Alexandre Ortega (Embrapa)

CHILE

Fecha de creación 14 de abril de 2006

Coordinadores CAZALAC Fernando Santibáñez, Koen Verbist

COLOMBIA

Fecha de creación

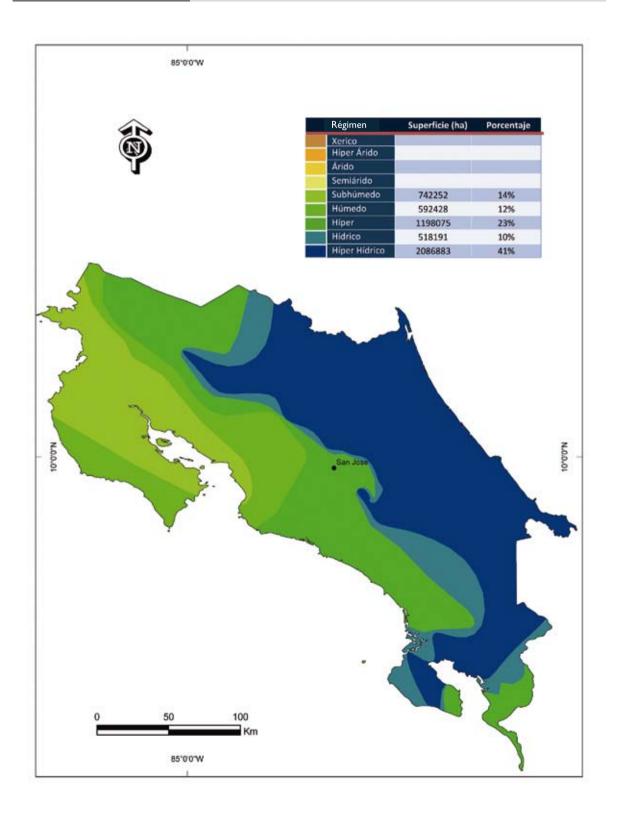

14 de abril de 2006

Coordinadores CAZALAC

Fernando Santibáñez, Koen Verbist

Coordinadores Nacionales

Yesid Carvajal (Universidad del Valle)

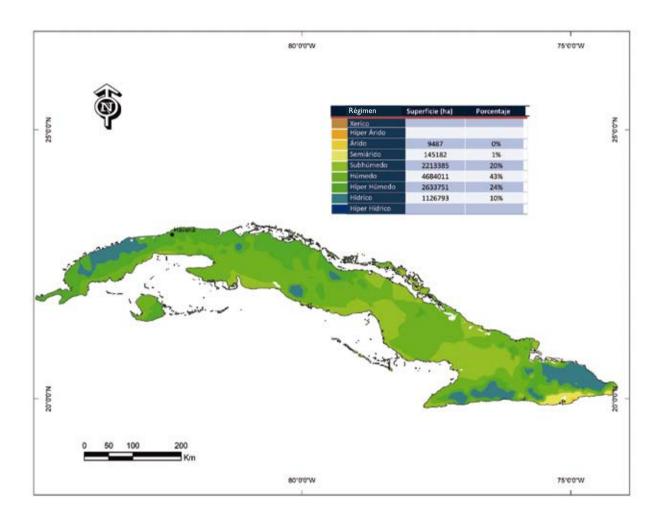


COSTA RICA

Fecha de creación Coordinadores CAZALAC 14 de abril de 2006

Fernando Santibáñez, Koen Verbist

Coordinadores Nacionales Rafael Chacón (ICE)


CUBA

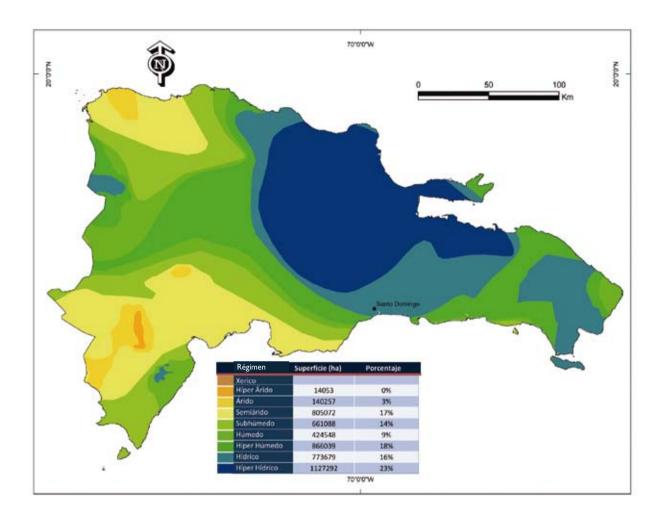
Fecha de creación 3 de febrero de 2006

Coordinadores CAZALAC Koen Verbist, Fernando Santibáñez

Coordinadores Nacionales

Oscar Solano, Braulio Lapinel y Ransés Vázquez (Inst. de Meteorología), Francis Rodríguez y Argelio Fernández (INRH)

REPÚBLICA DOMINICANA


Fecha de creación 29 de junio de 2006

Coordinadores CAZALAC

Koen Verbist, Fernando Santibáñez

Coordinadores Nacionales

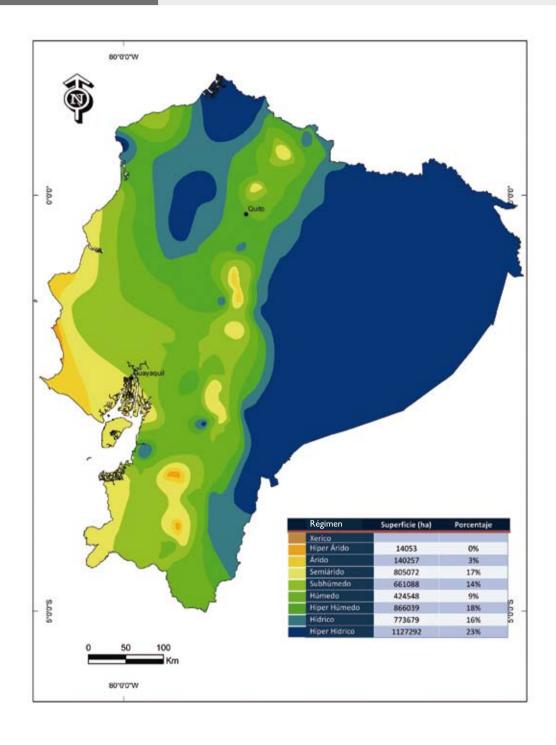
Héctor Rodríguez (INDRHI)

ECUADOR

Fecha de creación

Coordinadores CAZALAC

Coordinadores Nacionales

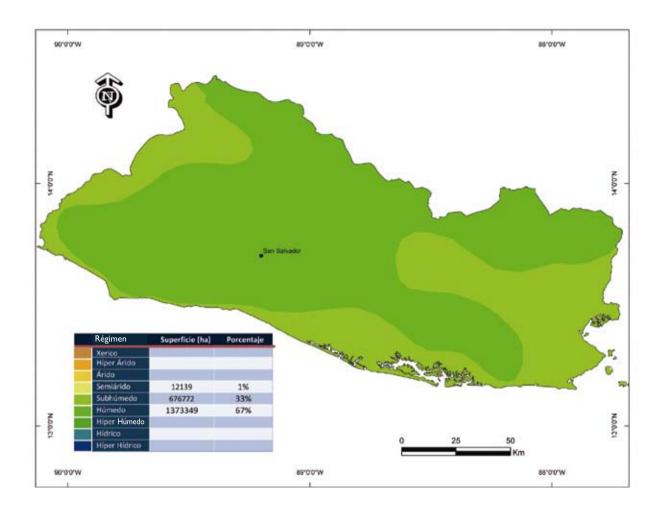

Participantes

22 de diciembre de 2008

Koen Verbist, Fernando Santibáñez, Jorge Núñez

Gilma Carvajal y Carlos Lugo (INAMHI)

Gonzalo Ontaneda, René Moya, Máximo Pinto, Hernán Parreño, Nancy Moya, Ximena Riofrío, Northon Burbano, Juan Molina, Alexie Talavera, Mario Tejada (INAMHI). David Neira (PACC), Jorge Guzmán (Punto Focal UNCCD). Felipe Cisneros (PROMAS).



EL SALVADOR

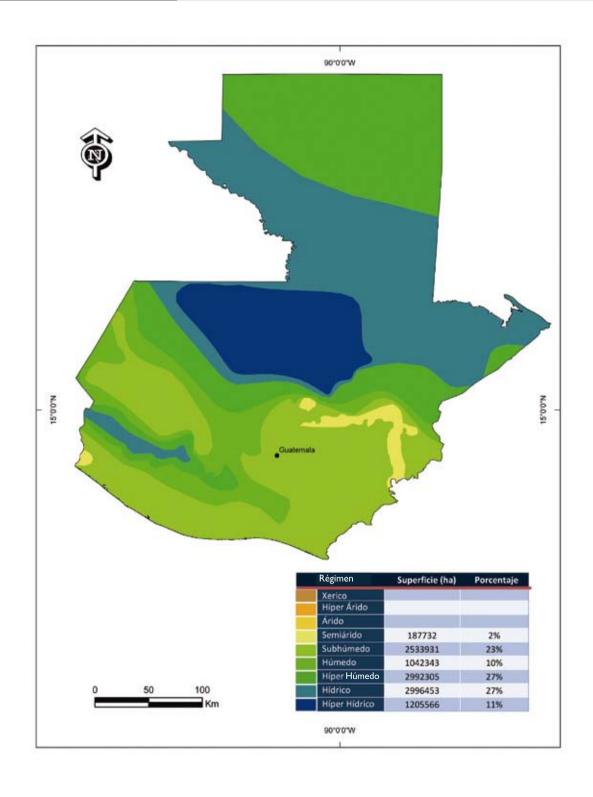
Fecha de creación 2 de enero de 2006

Coordinadores CAZALAC Koen Verbist, Fernando Santibáñez

Coordinadores Nacionales Deisy López (SNET)

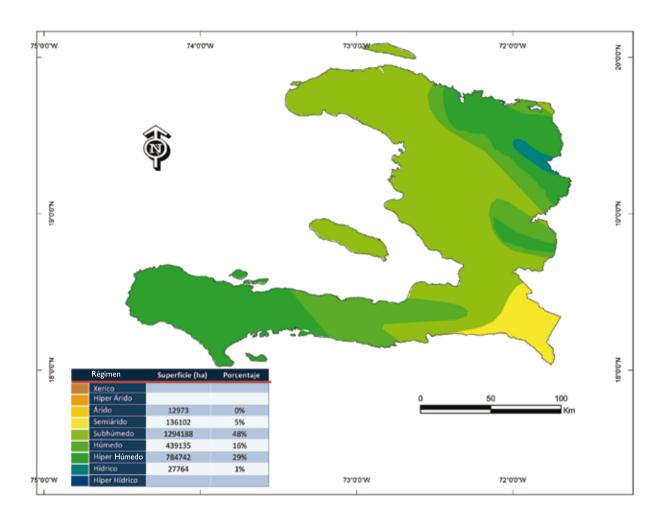
GUATEMALA

Fecha de creación


Coordinadores CAZALAC Koe

Coordinadores Nacionales

19 de julio de 2006

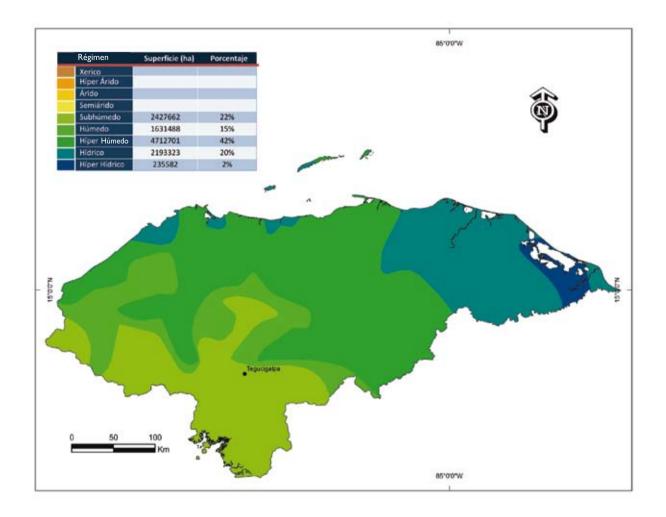

Koen Verbist, Fernando Santibáñez

Pedro Tax (INSIVUMEH)

HAITÍ

Fecha de creación	14 de abril de 2006
Coordinadores CAZALAC	Fernando Santibáñez, Koen Verbist
Coordinadores Nacionales	-

HONDURAS


Fecha de creación

Coordinadores CAZALAC

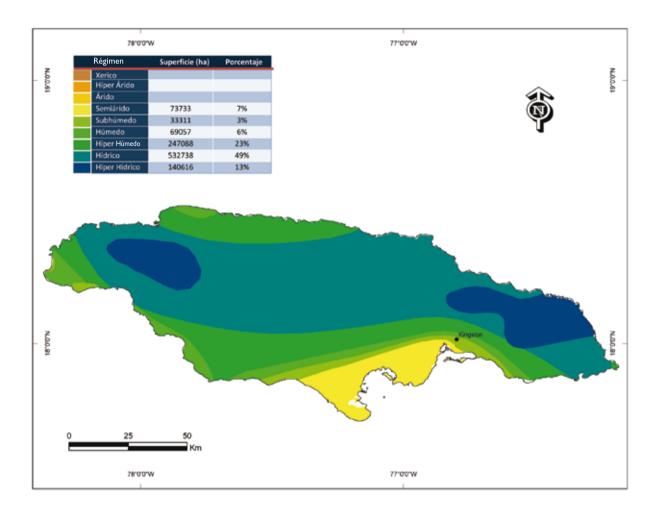
Coordinadores Nacionales

Ternando Santibáñez, Koen Verbist

Dania Baca (Serna)

JAMAICA

Fecha de creación


Coordinadores CAZALAC

Coordinadores Nacionales

14 de noviembre de 2007

Fernando Santibáñez, Koen Verbist

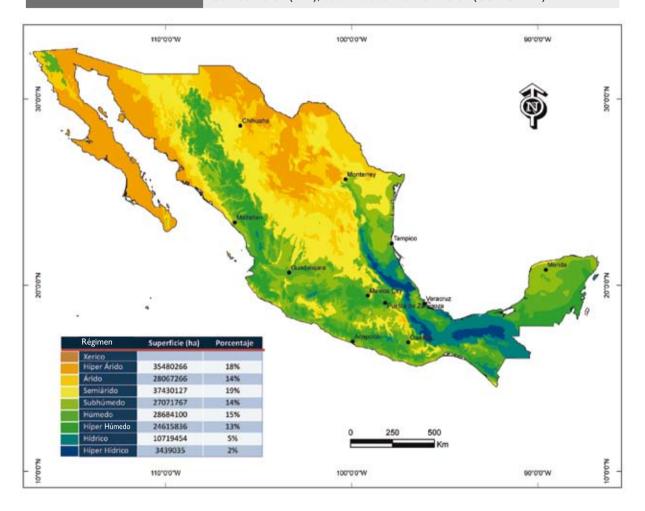
Shonel Dwyer (Water Resources Authority)

MÉXICO

Fecha de creación

Coordinadores CAZALAC

Coordinadores Nacionales


Participantes

30 de noviembre de 2007

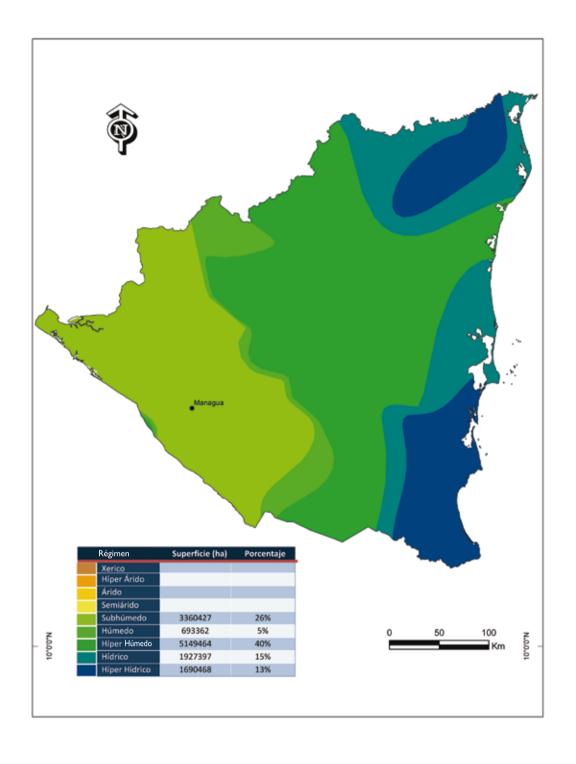
Koen Verbist, Guido Soto Alvarez

Israel Velasco Velasco y Javier Aparicio (IMTA)

Esteban Pimentel (IMTA), Ramón Arteaga Ramírez (UACH), Hilario Charcas Salazar (IIZD-UASLP), Valentina Davydova (SMN-CONAGUA), Engracia Hernández (UNAM), Helena Cotler Dávalos (I. Nac. de Ecología), Daniel Núñez Lopez (CEISS) Francisco Mojarro Dávila (INIFAP), Guillermo Crespo Pichardo (Col. De Postgrad.), Ramiro Vega Nevarez (IMTA), Arturo Garrido Pérez (INE), Juan Matías Méndez Pérez (CCA-UNAM)

NICARAGUA

Fecha de creación


Coordinadores CAZALAC

Coordinadores Nacionales

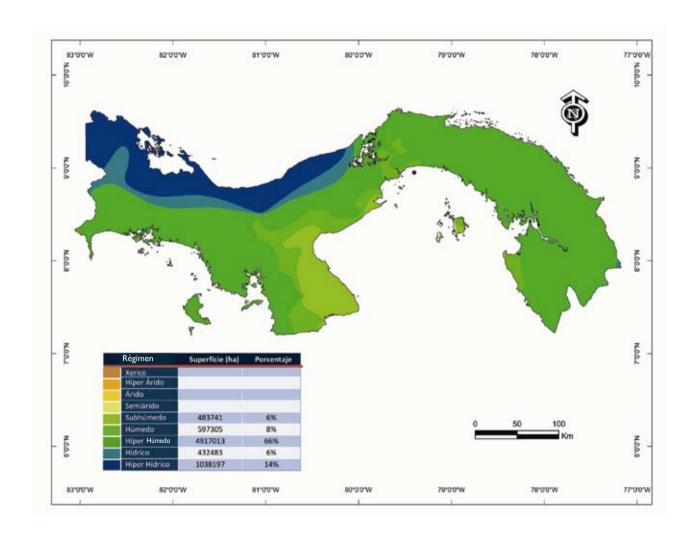
14 de abril de 2006

Fernando Santibáñez, Koen Verbist

Luis Palacios Ruiz (INETER)

PANAMÁ

Fecha de creación


Coordinadores CAZALAC

Coordinadores Nacionales

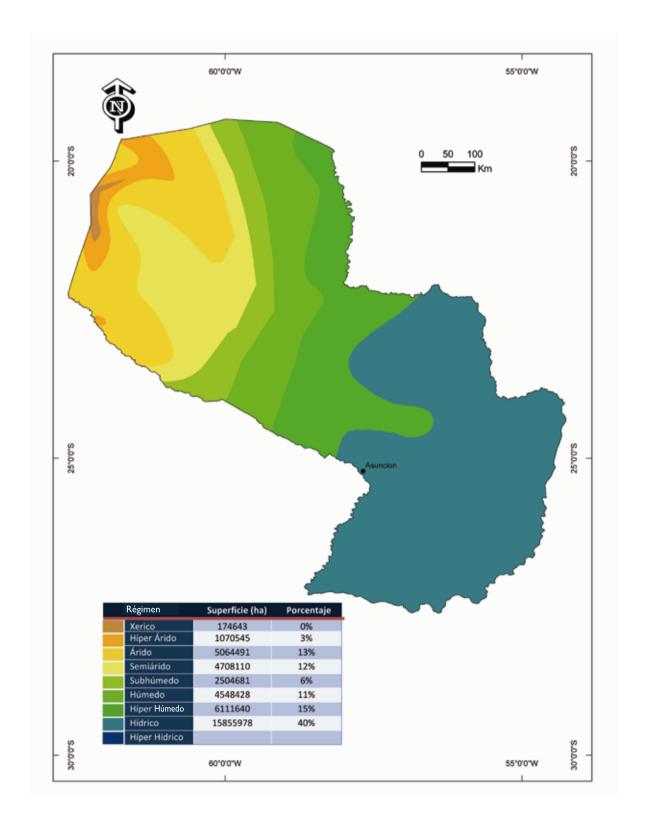
14 de abril de 2006

Fernando Santibáñez, Koen Verbist

Iván Jaramillo (ETESA)

PARAGUAY

Fecha de creación


Coordinadores CAZALAC

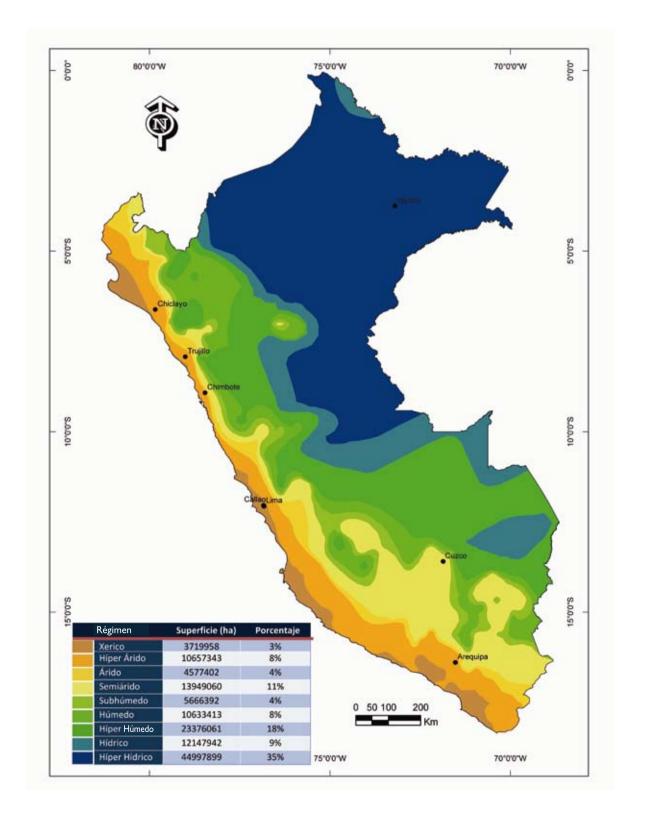
Coordinadores Nacionales

14 de abril de 2006

Fernando Santibáñez, Koen Verbist

Lilian Portillo (Secretaria del Ambiente)

PERÚ

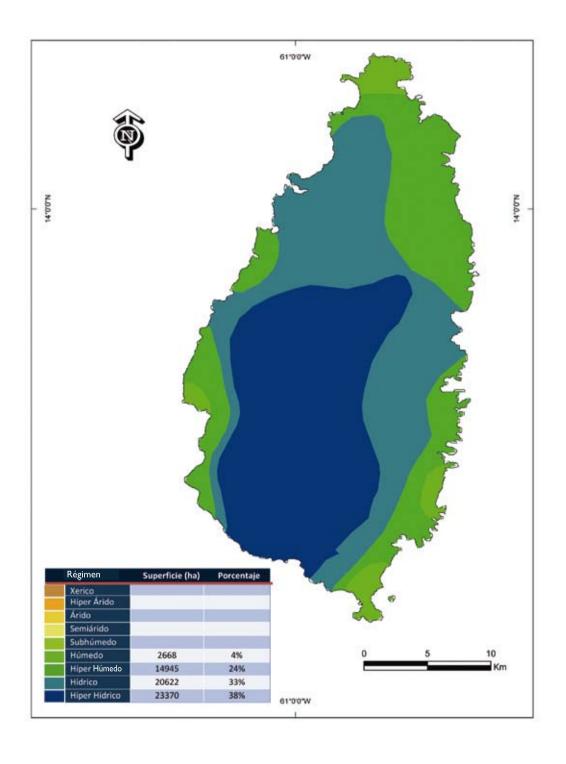

Fecha de creación Coordinadores CAZALAC

Coordinadores Nacionales

03 de julio de 2006

Koen Verbist, Fernando Santibáñez

Héctor Vera (Dir. de Hidrología y Rec. Hídricos del SENAMHI)

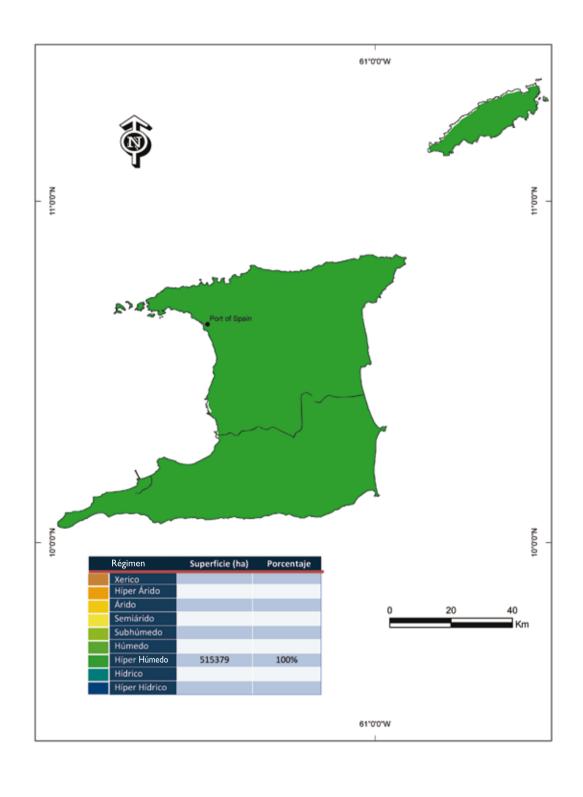


SANTA LUCÍA

Fecha de creación Coordinadores CAZALAC Coordinadores Nacionales 27 de noviembre de 2007

Koen Verbist, Fernando Santibáñez

Bernadine Joseph, Jamar Regis (Min. of Agricult., Forestry and Fisheries)



TRINIDAD

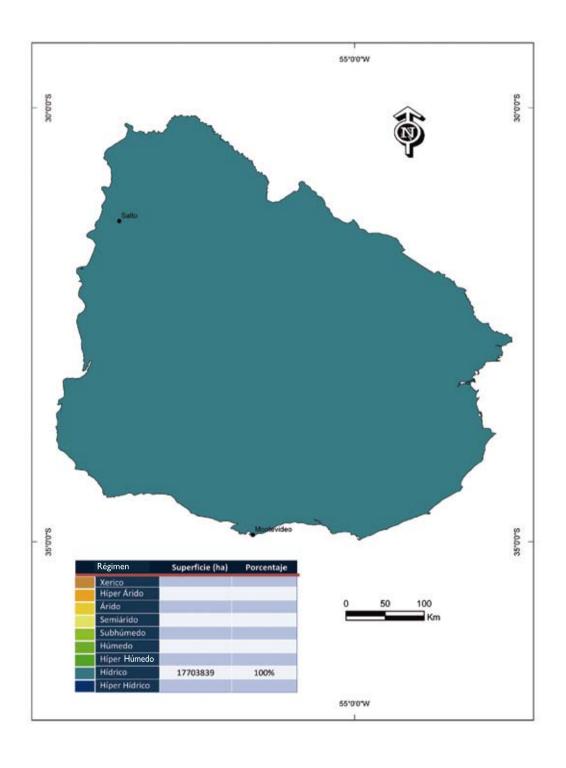
Fecha de creación 14 de abril de 2006

Coordinadores CAZALAC Fernando Santibáñez, Koen Verbist

Coordinadores Nacionales Brian Beckles (Water Resources Agency (WASA)

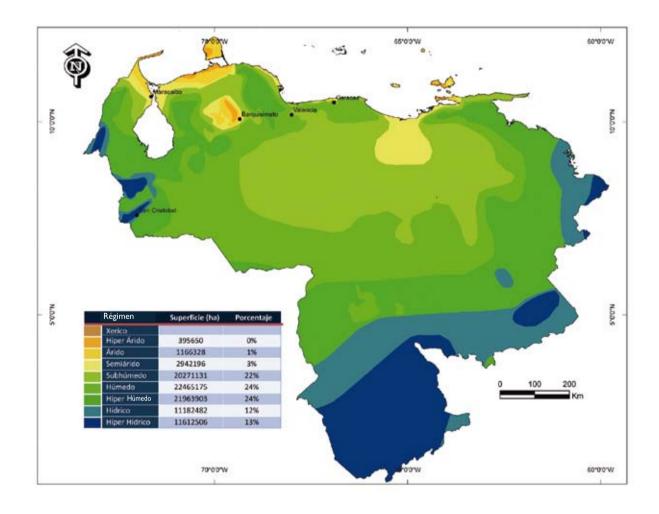
URUGUAY

Fecha de creación


Coordinadores CAZALAC

Coordinadores Nacionales

3 de julio de 2006


Koen Verbist, Fernando Santibáñez

Alfredo Altamirano - RENARE

VENEZUELA

Fecha de creación	22 de diciembre de 2008
Coordinadores CAZALAC	Koen Verbist, Fernando Santibáñez
Coordinadores Nacionales	Deyanira Lobo, Marelia Puche, Gennady Bracho, María T. Martelo (UCV)
Participantes	Luis García (EDELCA), Juan Comerma (PEQUIVEN), Luis Arias (INIA-UCV), Cristóbal Hernández, Richard Núñez (Serv. de Meteo. Fuerza Aérea), Francisco Ovalles, María F. Rodríguez, Adriana Cortez (INIA), Rafael Hernández, Lester León (Minamb), Jorge Paolini (IVIC), Pedro Escalona, Javier Acosta (FUDECO), Víctor Sevilla (PDVSA).

Referencias

- Arnoldus, H.M. 1980. An approximation of the rainfall factor in the Universal Soil Loss Equation. En: De Boodt M., and Gabriels D. (Eds) Assessment of erosion. John Wiley and Sons, Inc. Chichester, West Sussex, UK. 127 – 132.
- Deutscher Verband für Wasserwirtshaft und Kulturban e.V. (DVWK). 1996. Ermittlung der Verdunstung von Land-und Wasserflächen. Heft. 238.
- FAO, 1984. Agroclimatic Data from Latin America and the Caribbean. Environment and Natural Resources.
- FAO, 2000. World-wide Agroclimatic Data. Environment and Natural Resources, CD-ROM.
- Fournier, F. 1960. Climat et érosion. Ed. Presses Universitaires de France. Paris.
- Jensen, M.E., Burman, R.D., Allen, R.G., 1990. Evapotranspiration and Irrigation Water Requirements. ASCE Manuals and Reports on Engineering Practice No. 70. American Society of Civil Engineers, New York.
- Lobo D. L., Gabriels, D., Ovalles F.V., Santibáñez, F. Moyano, M.C., Aguilera, R., Pizarro, R., Sangüesa, C. y Urra, N. 2005. Guía metodológica para la elaboración del mapa de zonas áridas, semiáridas y subhúmedas secas de América Latina y el Caribe. CAZALAC, Chile, 59 p.
- Lu, J.B., Sun, G., McNulty, S.G., Arnatya, D.M., 2005. A Comparison of six potential evapotranspiration methods for regional use in the Southeastern United States. Journal of the American Water Resources Association, 41(3), 621-633.
- Martínez, C.J., Thepadia, M., 2010. Estimating reference evapotranspiration with minimum data in Florida, USA. Journal of Irrigation and Drainage Engineering, http://dx.doi.org/10.1061/ (ASCE)IR.1943-4774.0000214.
- Monteith, J.L. 1965. Evaporation and the environment, the state and movement of water in living organisms. XIXthe Symposium. Cambridge University Press, Swansea.
- Santibáñez, F. 2005. Sistema Cálculo de Indices del Régimen Hídrico (CIRH). Version 2.0.
 Agrimed, Universidad de Chile, software.
- Thornthwaite, C. W. 1948. An approach toward a rational classification of climate. Geographical Review 38:55-94.
- Turc, L. 1961. Evaluation des besoins en eau d'irrigation, evapotranspiration, potentielle, formule climatique simplifice et mise a jour. Ann. Agron. 12 :13-49.